K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2015

A B C D I 6 4 8 6 H

Tam giác ABI có cạnh AB < AI => góc ABI > góc AIB

Kẻ AH vuông góc với BD . Đặt BH = x;  AH = y 

+) Nếu H nằm trong đoạn BI

Áp dụng ĐL Pi ta go trong tam giác vuông AHB có: AH2 + BH= AB2 => y2 +  x2 = 36    (1)

HI = 4 - x

Áp dụng ĐL Pi ta go trong tam giác vuông AHI có: AH2 + HI2 = AI=> y2 + (4 - x)= 64 => y+ x+ 16 - 8x = 64    (2)

Từ (1)(2) => 36 + 16 - 8x = 64 => 8x = -12 => Loại 

=> H nằm ngoài đoạn BI về phía B

A B C D I 6 4 8 6 H

HI = x + 4 

Áp dụng ĐL Pi ta go trong tam giác vuông AHI có: AH2 + HI= AI=> y+ (x+ 4)= 64 => y2 + x+ 8x + 16 = 64 (3)

Từ (1)(3) => 36 + 16 + 8x = 64 => 8x = 12 => x = 1,5

=> y= 33,75 

HD = x + 4 + 6 = 11,5 

Áp dụng ĐL Pita go trong tam giác vuông AHD có: AD = y+ HD=> AD2 = 33,75 + 11,5= 166 => AD = \(\sqrt{166}\approx12,88\) (cm) 

a) Chúng ta sẽ dùng cách chứng minh phản chứng

Để ABCD là tứ giác nội tiếp thì OA=OB=OC=OD(O là tâm của đường tròn ngoại tiếp tứ giác nội tiếp ABCD vì O là giao điểm của hai đường chéo)

hay \(OA\cdot OC=OB\cdot OD\)(đpcm)

 

28 tháng 2 2021

Nếu $OA\neq OB \neq OC \neq OD$ thì sao ạ? Với hình như "O là giao điểm của hai đường chéo thì là tâm đường tròn" chỉ đúng khi ABCD là hình thang cân.

bài này em ko bt em mới học lp 6 thôi

29 tháng 4 2016

Xét các tam giác đồng dạng là dc

10 tháng 4 2020

*Không vẽ được hình, bạn thông cảm*

Gọi O' là điểm trên IO sao cho \(IO'=\frac{1}{3}IO\)

Xét \(\Delta\)IAO có: \(\frac{IA'}{IA}=\frac{IO'}{IO}\left(=\frac{1}{3}\right)\Rightarrow O'A'//OA\) (định lý Talet đảo)

Do đó: \(\frac{O'A'}{OA}=\frac{IA'}{IA}=\frac{1}{3}\Rightarrow O'A'=\frac{1}{3}R\)

Cmtt ta được: \(O'B'=\frac{1}{3}R;O'C'=\frac{1}{3}R;O'D'=\frac{1}{3}R\)

3: Xét ΔIOD và ΔIBC có

góc ICB=góc IDO

góc OID=góc BIC

=>ΔIOD đồng dạng với ΔIBC

=>IO/IB=ID/IC

=>IO*IC=IB*ID

30 tháng 5 2023

IO*IC=IB*IF

a) Xét tứ giác IAOB có 

\(\widehat{IAO}\) và \(\widehat{IBO}\) là hai góc đối

\(\widehat{IAO}+\widehat{IBO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: IAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét (O) có 

\(\widehat{ADC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)

\(\widehat{IAC}\) là góc tạo bởi tiếp tuyến AI và dây cung AC

Do đó: \(\widehat{ADC}=\widehat{IAC}\)(Hệ quả góc tạo bởi tia tiếp tuyến và dây cung)

hay \(\widehat{IDA}=\widehat{IAC}\)

Xét ΔIDA và ΔIAC có 

\(\widehat{IDA}=\widehat{IAC}\)(cmt)

\(\widehat{AIC}\) chung

Do đó: ΔIDA∼ΔIAC(g-g)

Suy ra: \(\dfrac{ID}{IA}=\dfrac{IA}{IC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(IA^2=IC\cdot ID\)(đpcm)

a) Xét (O) có

ΔADB nội tiếp đường tròn(A,D,B∈(O))

AB là đường kính

Do đó: ΔADB vuông tại D(Định lí)

\(\widehat{ADB}=90^0\)

hay \(\widehat{ADE}=90^0\)

Xét tứ giác ADEH có 

\(\widehat{ADE}\) và \(\widehat{AHE}\) là hai góc đối

\(\widehat{ADE}+\widehat{AHE}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ADEH là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)