K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2015

mk mới lên lớp 8 nên ko bít làm nhìn mún lòi mắt

28 tháng 7 2018

#naruto Có ai hỏi bạn đâu mà trả lời

15 tháng 11 2019

a) Gọi P và Q lần lượt là giao điểm của AE, AF với CD.

Chứng minh tương tự 2B.

b) Ta có:

M N = 1 2 ( A B + C D ) = 1 2 ( a + c )  

Lại có:

c = CD = CQ + QD = BC + QD = b + QD (do tam giác BCQ cân) Þ QD = c - b.

Trong hình thang ABQD có M là trung điểm của AD và MF//DQ nên chứng minh được F là trung điểm của BQ, từ đó chứng minh MF là đường trung bình của hình thang ABQD.

Vì MF là đường trung bình của hình thang ABQD.

Þ M F = 1 2 ( A B + D Q ) = 1 2 ( a + c − b )  

Mặt khác, FN  là đường trung bình của tam giác BCQ, tức là F N = 1 2 C Q = 1 2 b .

7 tháng 9 2021

tương tự 2B là sao bạn

 

23 tháng 8 2017

a) Gọi E, F lần lượt là giao điểm của AM và CD, BN và CD 

Ta có : AB//CD (gt) => E = A1 (so le trong)

 Mà A1 =A2 (gt) 

Nên A2 = E 

Xét ΔADE cân tại D, có DM là p/giác nên DM đồng thời là trung tuyến 

=>AM= EM 

Chứng minh tương tự, ta được : 

BN = FN 

Xét hình thang ABEF có : AM=BN(cm trên) 

BN=FN(cm trên) 

Do đó MN là đường TB của HÌNH thang ABEF 

=> MN= \(\frac{EF+AB}{2}\)

MN//AB//EF Vậy MN// CD(đpcm) 

b)Do ED= AD; BC=FC 

Mà ED + DC + CF = EF 

Nên AD + DC + BC = EF 

Lại có MN \(\frac{EF+AB}{2}\)(CM trên) 

Suy ra MN= \(\frac{AD+DC+BC+AB}{2}\)\(=\frac{a+b+c+d}{2}\)

26 tháng 7 2022

Hình như bạn sai rồi. Tại sao ED + DC + CF lại bằng EF? Ý bạn là DE + EC + CF?

11 tháng 2 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

MN = (AB + M’N') / 2 (tính chất đường trung hình hình thang)

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Mà M'D = AD, CN' = BC.

Thay vào (1) : Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

12 tháng 9 2018

a) Sử dụng tính chất dãy tỉ số bằng nhau.   A ^ = 144 0 ,    B ^ = 108 0 ,   C ^ = 72 0 ,    D ^ = 36 0

b) Sử dụng tổng ba góc trong tam giác tính được C E D ^ = 126 0 .

Chú ý hai phân giác trong và ngoài tại mỗi  góc của một tam giác thì vuông góc nhau, cùng với tổng bốn góc trong tứ giác, ta tính được  C F D ^ = 54 0