K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABD có 

P là trung điểm của AB

F là trung điểm của AD
Do đó: PF là đường trung bình

=>PF//BD và PF=BD/2(1)

Xét ΔBCD có 

Q là trung điểm của BC

E là trung điểm của CD

Do đó: QE là đường trung bình

=>QE//BD và QE=BD/2(2)

Từ (1) và (2) suy ra PF//QE và PF=QE

Xét ΔABC có 

P là trung điểm của AB

Q là trung điểm của BC

DO đó: PQ là đường trung bình

=>PQ//AC

=>PQ\(\perp\)BD

hay PQ\(\perp\)PF

Xét tứ giác PFEQ có 

PF//EQ

PF=EQ

Do đó: PFEQ là hình bình hành

mà \(\widehat{FPQ}=90^0\)

nên PFEQ là hình chữ nhật

18 tháng 12 2022

a: Xét ΔABD có AM/AB=AQ/AD

nên MQ//BD và MQ=BD/2

Xét ΔCBD có CN/CB=CP/CD

nên NP//BD và NP=BD/2

=>MQ//PN và MQ=PN

=>MNPQ là hình bình hành

Xét ΔBAC có BM/BA=BN/BC

nên MN//AC và MN=AC/2

=>MN vuông góc với NP

=>MNPQ là hình chữ nhật

b: Để MNPQ là hình vuông thì MN=NP

=>AC=BD

30 tháng 11 2017

Mk ko biết làm bài này khó quá trời 

a) tgiác ABC có MN là đường trung bình => MN // AC và MN = AC/2 
tgiác DAC có PQ là đường trung bình => PQ // AC và PQ = AC/2 
vậy: MN // PQ và MN = PQ => MNPQ là hình bình hành 

mặt khác xét tương tự cho hai tgiác ABD và CBD ta cũng có: 
NP // BD và NP = BD/2 
do giả thiết AC_|_BD => AC_|_NP mà MN // AC => MN_|_NP 

tóm lại MNPQ là hình chữ nhật (hbh có một góc vuông) 

b) MNPQ là hình vuông <=> MN = NP <=> AC/2 = BD/2 <=> AC = BD 
vậy điều kiện là: tứ giác ABCD có hai đường chéo vuông góc và bằng nhau 

cho tứ giác ABCD. Gọi M,N,P,Q lần lượt là tđ của AB,BC,CD,DA.

a) tứ giác MNPQ là hình gì ? vì sao?

MN//BD; PQ//BD

NP//AC; QM//AC

=>MN//PQNP//QNMNPQ la hbbh

10 tháng 12 2016

tgiác ABC có MN là đường trung bình => MN // AC và MN = AC/2
tgiác DAC có PQ là đường trung bình => PQ // AC và PQ = AC/2
vậy: MN // PQ và MN = PQ => MNPQ là hình bình hành

mặt khác xét tương tự cho hai tgiác ABD và CBD ta cũng có:
NP // BD và NP = BD/2
do giả thiết AC_|_BD => AC_|_NP mà MN // AC => MN_|_NP

tóm lại MNPQ là hình chữ nhật (hbh có một góc vuông)

b) MNPQ là hình vuông <=> MN = NP <=> AC/2 = BD/2 <=> AC = BD
vậy điều kiện là: tứ giác ABCD có hai đường chéo vuông góc và bằng nhau
c, Vỳ Mn là đườq trung bình của tam giác ABC nên MN= \(\frac{1}{2}\) AC= 3cm

QM là đường trung bình của tam giác ABD nên QM = \(\frac{1}{2}\) BD = 4cm

Mà MNPQ là hình chữ nhật nên diện tích ABCD = ( MN+PQ).2= (3.4):2 = 6cm

11 tháng 12 2016

Bạn ơi lẽ ra chỗ diện tích hcn là phải bằng = 3 . 4 = 12cm chứ nhỉ bạn

25 tháng 10 2021

a: Xét ΔABD có

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔABD

Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

N là trung điểm của BC

P là trung điểm của CD

Do đó: NP là đường trung bình của ΔBCD

Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra MQ//NP và MQ=NP

Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC

mà AC\(\perp\)BD

nên MN\(\perp\)BD

hay MN\(\perp\)MQ

Xét tứ giác MQPN có

MQ//NP

MQ=NP

Do đó: MQPN là hình bình hành

mà \(\widehat{QMN}=90^0\)

nên MQPN là hình chữ nhật