K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2023

tham khảo:

a) Tam giác AOB có A'B' là đường trung bình nên A'B'//AB hay A'B'//(OBC)

Tam giác AOC có A'C' là đường trung bình nên A'C"//AC hay A'C'//(OBC)

Suy ra (A'B'C')//(OBC)

Mà OA⊥(OBC) nên OA⊥(A′B′C′)

b) Vì OA⊥(OBC);BC∈(OBC) nên OA⊥CB

Ta có đường thẳng BC vuông góc với hai đường thẳng OH và OA cắt nhau cùng thuộc (AOH) nên BC⊥(OAH)

Mà tam giác ABC có B'C' là đường trung bình nên B'C'//BC

Suy ra B′C′⊥(AOH) 

a: OA\(\perp\)OB

OA\(\perp\)OC

OB,OC cùng thuộc mp(OBC)

Do đó: OA\(\perp\)(OBC)

b: Ta có: BC\(\perp\)AK

BC\(\perp\)AO

AK,AO cùng thuộc mp(AKO)

Do đó: BC\(\perp\)(AKO)

=>BC\(\perp\)OH

Ta có: OH\(\perp\)BC

OH\(\perp\)AK

AK,BC cùng thuộc mp(ABC)

Do đó: OH\(\perp\)(ABC)

 

NV
27 tháng 1 2021

\(\widehat{A'BA}=60^0\Rightarrow AA'=AB.tan60^0=a\sqrt{3}\)

(Lại 1 bài mà sử dụng tọa độ hóa sẽ cho kết quả cực kì nhanh chóng).

Lớp 11 thì chắc phải dựng hình:

Trong mp (A'B'C'), qua C' kẻ đường thẳng song song A'B', qua B' kẻ đường thẳng song song A'C', hai đường thẳng này cắt nhau tại D'

\(\Rightarrow AC'||BD'\) (do tứ giác ABD'C' là hình bình hành)

\(\Rightarrow d\left(AC';A'B\right)=d\left(AC';\left(A'BD'\right)\right)=d\left(C';\left(A'BD'\right)\right)\)

Gọi giao điểm của A'D' và B'D' là O \(\Rightarrow OB'=OC'\) theo t/c 2 đường chéo hbh

\(\Rightarrow d\left(C';\left(A'BD'\right)\right)=d\left(B';\left(A'BD'\right)\right)\)

Quy được về 1 bài tính khoảng cách cơ bản: tứ diện B.A'B'D' có \(BB'\perp\left(A'B'D'\right)\) , tìm k/c từ B' đến mp (A'BD')

Lần lượt kẻ B'H vuông góc A'D' và B'K vuông góc BH thì B'K là k/c cần tìm

Bạn tự tính toán nốt nhé

21 tháng 8 2023

tham khảo:

Bài tập 2 trang 64 Toán 11 tập 2 Chân trời

a) Tam giác ABD có HK là đường trung bình nên HK//BD

Vì ABCD là hình vuông nên AC⊥BD. Suy ra AC⊥HK

Vì SH⊥(ABCD) nên SH⊥AC

Ta có: AC⊥SH,AC⊥HK nên AC⊥(SHK)

b) Ta có tam giác AHD và tam giác DKC bằng nhau nên DH⊥CK

Mà SH⊥(ABCD) nên SH⊥CK

Suy ra CK⊥(SDH)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

\(\begin{array}{l}\left. \begin{array}{l}OA \bot OB\\OA \bot OC\end{array} \right\} \Rightarrow OA \bot \left( {OBC} \right) \Rightarrow OA \bot BC\\OH \bot \left( {ABC} \right) \Rightarrow OH \bot BC\\ \Rightarrow BC \bot \left( {OAH} \right) \Rightarrow BC \bot AH\end{array}\)