K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2019

Đáp án B.

Phương pháp

Gọi E và F lần lượt là trung điểm của AC và CD, chứng minh 

E F ⊥ A B E F ⊥ C D .

Cách giải

Gọi E và F lần lượt là trung điểm của AC và CD ta có:

Δ A C D = Δ B C D c . c . c ⇒ A F = B F ⇒ Δ A B F  

cân tại F ⇒ E F ⊥ A B .  

Chứng minh tương tự ta có 

E F ⊥ C D ⇒ d A B ; C D = E F .

Ta có: 

A F = 6 3 2 = 3 3

Xét tam giác vuông AEF có

E F = A F 2 − A E 2 = 3 2

 

16 tháng 4 2017

6 tháng 9 2017

14 tháng 3 2018

Phương pháp

+) Dựng E sao cho ABCE là hình bình hành. Chứng minh d(AB;CD) = d(M;(CDE)).

+) Dựng khoảng cách từ M đến (CDE).

+) Áp dụng định lí Pytago trong các tam giác hình vuông tính CD.

Cách giải

Dựng E sao cho ABCE là hình bình hành như hình vẽ.

14 tháng 7 2019
25 tháng 9 2019

Đáp án D

19 tháng 11 2019

Chọn đáp án A.

8 tháng 1 2017

Đáp án A

Gọi M, N lần lượt là trung điểm của AB và CD Δ A N B  cân tại N nên M N ⊥ A B Δ A D B = Δ A C B    c . c . c . Nên M D = M C ⇒ Δ M D C cân tại M ⇒ M N ⊥ C D    2  

Từ (1), (2) ta có MN là đoạn vuông góc chung của AB và DC.

Vậy khoảng cách giữa AB và CD bằng MN. M N = A N 2 − A M 2 = 3 3 2 2 − 5 2 2 = 2 2  

7 tháng 5 2019

Chọn B

Gọi I là trung điểm AB, J là trung điểm CD

Từ AC=AD=BC=BD =>IJ chính là đoạn vuông góc chung của 2 đường thẳng AB và CD

=> IJ = a

Gọi O là điểm cách đều 4 đỉnh => O là tâm mặt cầu ngoại tiếp tứ diện ABCD

=> O nằm trên IJ => Ta cần tính OA

Ta có:

9 tháng 10 2019