K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2018

Đáp án B

Gọi O là trọng tâm ∆ABC

Kẻ AM ⊥  AC và MH  ⊥  AD

Vì DABC là tứ diện đều => DO ⊥ (ABC)

Vì ∆ABC đều => AO = 

Xét ∆DAO vuông tại O

Ta có: DO ⊥ BC và AM ⊥ BC

=> (DAM)BC

=> MH BC

     Lại có MH ⊥ DA 

     => MH = d(BC, DA)

     Xét ∆DAM, ta có:

     DO.AM = MH.AD

      ⇔ MH =   a 2 2

      d(BC, DA) = a 2 2

22 tháng 10 2019

Đáp án B.

Gọi  lần lượt là trung điểm của AD và BC. Ta có ∆ ABD và  ∆ ACD đều cạnh bằng a nên 

=>  ∆ MBC cân tại MMN là đường cao của  ∆ MBC => MN ⊥ BC

Tương tự,  ∆ NAD cân tại N nên NM là đường cao của  ∆ NAD => NM ⊥ AD

Suy ra MN là đoạn vuông góc cung của AD và BC.

Vậy 

 

8 tháng 5 2019

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 3)

Tính khoảng cách giữa AD và BC.

● Trong ΔADH vẽ đường cao HK tức là HK ⊥ AD (1)

- Mặt khác BC ⊥ (ADH) nên BC ⊥ HK (2)

- Từ (1) và (2) ta suy ra d(AD, BC) = HK.

● Xét ΔDIA vuông tại I ta có:

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 3)

● Xét ΔDAH ta có:

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 3)

Chọn A

Chọn C

NV
17 tháng 4 2022

\(\left\{{}\begin{matrix}BD\perp SO\\BD\perp AC\end{matrix}\right.\) \(\Rightarrow BD\perp\left(SAC\right)\)

Từ O kẻ \(OH\perp SA\) (H thuộc SA)

Do \(OH\in\left(SAC\right)\Rightarrow BD\perp OH\)

\(\Rightarrow OH\) là đường vuông góc chung BD và SA hay \(OH=d\left(BD;SA\right)\)

\(AC=a\sqrt{2}\Rightarrow AO=\dfrac{1}{2}AC=\dfrac{a\sqrt{2}}{2}\) ; \(SO=\sqrt{SA^2-AO^2}=\dfrac{a\sqrt{2}}{2}\)

\(\Rightarrow\Delta SAO\) vuông cân tại O

\(\Rightarrow OH=\dfrac{1}{2}SA=\dfrac{a}{2}\)

31 tháng 3 2017

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 3)

CMR: BC ⊥ (ADH) và DH = a.

● Δ ABC đều, H là trung điểm BC nên AH  BC, AD  BC

⇒ BC ⊥ (ADH) ⇒ BC ⊥ DH.

⇒ DH = d(D, BC) = a

8 tháng 7 2018

ĐÁP ÁN: D

11 tháng 11 2019

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 3)

CMR: DI ⊥ (ABC).

● AD = a, DH = a ΔDAH cân tại D.

- Mặt khác I là trung điểm của AH nên DI ⊥ AH.

● BC ⊥ (ADH) ⇒ BC ⊥ DI.

⇒ DI ⊥ (ABC).