Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi H là hình chiếu của điểm A trên mặt phẳng(BCD). Do ABCD là tứ diện đều nên tâm H là tâm đường trong ngoại tiếp Δ B C D .
Đặt cạnh của tứ diện là a. Gọi M là trung điểm của CD.
Do Δ B C D đều nên
B M = a 3 2 ⇒ B H = 2 3 B M = 2 3 . a 3 2 = a 3 3
Ta có Δ A B H vuông tại H nên
A H = A B 2 − B H 2 = a 2 − a 3 3 2 = a 6 3
Từ giả thiết ta có
A H = a 6 3 = 6 ⇔ a = 3 6 ⇒ S Δ B C D = a 2 3 4 = 27 3 2
(đvdt).
Vậy thể tích của tứ diện ABCD là
A H = a 6 3 = 6 ⇔ a = 3 6 ⇒ S Δ B C D = a 2 3 4 = 27 3 2
(đvtt).
Đáp án B
Gọi M là trung điểm của BC khi đó D M ⊥ B C A M ⊥ B C
Suy ra B C ⊥ ( D M A ) ⇒ D B C ; A B C ^ = 60 °
Lại có D M = A M = a 3 2
Dựng D H ⊥ A M ⇒ D H ⊥ ( A B C )
Khi đó V A B C D = 1 3 D H . S A B C = 1 3 D M . sin 60 ° . a 2 3 4 = a 2 3 16 .
Gọi hình chiếu vuông góc hạ từ A đến mặt phẳng (BCD) là H. Khoảng cách từ A đến mặt phẳng (BCD) là AH.
Vì tứ diện đều nên H là trọng tâm tam giác BCD
Đáp án A
Nối chia khối tứ diện ABCD thành hai khối đa diện gồm PQD.NMB và khối đa diện chứa đỉnh A có thể tích A.
Dễ thấy P,Q lần lượt là trọng tâm của ∆BCE, ∆ABE
Gọi S là diện tích
Họi h là chiều cao của tứ diện ABCD
Khi đó
Suy ra
Đáp án A
V SABCD = 1 3 . S ABCD . d S , ABCD = 1 3 . a 2 . d S , ABCD = 3 a 3 ⇒ d S , ABCD = 9 a .
Đáp án B
Gọi O là tâm của tam giác BCD và M là trung điểm CD
⇒ A O ⊥ ( B C D ) ⇒ d A ; B C D = A O = 6
Đặt độ dài cạnh của tứ diện ABCD là x ⇒ B O = 2 B M 3 = x 3 3
⇒ A O = A B 2 - B O 2 = x 6 3 = 6 ⇔ x = 3 6
⇒ V = S B C D . A O 3 = x 2 3 . A O 12 = 27 3