Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chú ý rằng I, J, K thẳng hàng vì chúng cùng thuộc giao tuyến của hai mặt phẳng (CBD) và (C'B'D')
b) 4. Vì 4 điểm không đồng phẳng sẽ tạo nên 1 tứ diện => có 4 mặt
Nối NP kéo dài cắt BD tại E
Áp dụng định lý Menelaus cho tam giác CBD:
\(\frac{NC}{NB}.\frac{BE}{ED}.\frac{DP}{PC}=1\Leftrightarrow3.\frac{BE}{ED}.2=1\Rightarrow\frac{BE}{ED}=\frac{1}{6}\Rightarrow\frac{DE}{EB}=6\)
Trong mặt phẳng (ABD), nối EM kéo dài cắt AD tại Q
Áp dụng định lý Menelaus cho tam giác ABD:
\(\frac{QA}{QD}.\frac{DE}{EB}.\frac{BM}{MA}=1\Leftrightarrow\frac{QA}{QD}.6.\frac{3}{2}=1\Leftrightarrow QD=9QA\)
\(\Rightarrow k=9\)
Câu hỏi của Julian Edward - Toán lớp 11 | Học trực tuyến
Nhận xét. Trên hình vẽ 2.23 không có sẵn đường thẳng nào của mặt phẳng (MNK) cắt AD. Ta xét mặt phẳng chứa AD chẳng hạn (ACD) rồi tìm giao tuyến ∆ của (ACD) với (MNK). Sau đó tìm giao điểm I của ∆ và AD, I chính là giao điểm phải tìm.
Gọi L = NK ∩ CD
Ta có L ∈ NK ⇒ L ∈ (MNK)
L ∈ CD ⇒ L ∈ (ACD)
Nên ML = (ACD) ∩ (MNK) = Δ
Δ ∩ AD = I ⇒ I = (MNK) ∩ AD