Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
+) Tam giác BCD có BC = BD nên cân tại B: Có BI là đường trung tuyến nên đồng thời là đường cao: CD ⊥ BI (1)
+) Tam giác ACD có AC = AD nên cân tại A: Có AI là đường trung tuyến nên đồng thời là đường cao: CD ⊥ AI (2)
- Từ (1) và (2) ⇒ CD ⊥ (ABI) (3)
+) Vì:
- Suy ra: góc giữa hai mặt phẳng (ACD) và (BCD) là
- Vậy: A sai.
+Do M, N lần lượt là trung điểm của AB và BC nên MN là đường trung bình của tam giác ABC
Chọn A.
+) Tam giác ABC cân tại A có AI là đường trung tuyến nên đồng thời là đường cao: AI ⊥ BC (1)
+) Tam giác BCD cân tại D có DI là đường trung tuyến nên đồng thời là đường cao: DI ⊥ BC (2)
- Từ (1) và (2) suy ra BC ⊥ (ADI).
Gọi N là trung điểm của AD
G là trọng tâm của tam giác ABD nên:
⇒ MG // CN.
Do CN thuộc (ACD) nên MG // (ACD).
Đáp án A
Chọn D.
- Vì MN, PQ lần lượt là đường trung bình tam giác ABD, BCD nên:
- Nên MN // PQ, MN = PQ.
⇒ tứ giác MNPQ là hình bình hành.
- Do đó MP và NQ cùng thuộc mặt phẳng MNPQ và hai đường thẳng này cắt nhau.
⇒ FG // EH // AC, EF // GH // BD
Vậy EFGH là hình bình hành
Đáp án A