Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do I là trọng tâm \(\Rightarrow\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\)
\(\Rightarrow\overrightarrow{IA}+\overrightarrow{AB}+\overrightarrow{IA}+\overrightarrow{AC}+\overrightarrow{IA}+\overrightarrow{AD}=\overrightarrow{0}\)
\(\Rightarrow\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}=3\overrightarrow{AI}\) (1)
Đặt \(\overrightarrow{AI}=x.\overrightarrow{AS}\) (2)
Từ giả thiết:
\(AM=2MB\Rightarrow\overrightarrow{AM}=2\overrightarrow{MA}+2\overrightarrow{AB}\Rightarrow\overrightarrow{AM}=\dfrac{2}{3}\overrightarrow{AB}\) \(\Rightarrow\overrightarrow{AB}=\dfrac{3}{2}\overrightarrow{AM}\) (3)
\(\overrightarrow{AN}=\overrightarrow{NC}=\overrightarrow{NA}+\overrightarrow{AC}\Rightarrow\overrightarrow{AN}=\dfrac{1}{2}\overrightarrow{AC}\) \(\Rightarrow\overrightarrow{AC}=2\overrightarrow{AN}\) (4)
\(\overrightarrow{AP}=3\overrightarrow{PD}=3\overrightarrow{PA}+\overrightarrow{AD}\Rightarrow\overrightarrow{AP}=\dfrac{3}{4}\overrightarrow{AD}\) \(\Rightarrow\overrightarrow{AD}=\dfrac{4}{3}\overrightarrow{AP}\) (5)
Thế (2);(3);(4);(5) vào (1):
\(\dfrac{3}{2}\overrightarrow{AM}+2\overrightarrow{AN}+\dfrac{4}{5}\overrightarrow{AP}=3x.\overrightarrow{AS}\)
\(\Rightarrow\overrightarrow{AS}=\dfrac{1}{2x}\overrightarrow{AM}+\dfrac{2}{3x}\overrightarrow{AN}+\dfrac{4}{15x}\overrightarrow{AP}\)
Theo định lý về đồng phẳng, do S, M, N, P đồng thẳng nên:
\(\dfrac{1}{2x}+\dfrac{2}{3x}+\dfrac{4}{15x}=1\) \(\Rightarrow x=\dfrac{43}{30}\)
Ủa có nhầm gì ko mà số xấu ta
Định lý về đồng phẳng đã nói ở đây, phần này rất hay sử dụng trong toán tỉ lệ không gian nên em nhớ là tốt nhất:
Cho hình chóp S.ABCD có đáy là hình bình hành. Lấy điểm M sao cho \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightar... - Hoc24
Hướng dẫn (khuya quá rồi).
Trong mp (ADN), lấy Q thuộc AD sao cho \(NP||GQ\)
\(\Rightarrow\left(\overrightarrow{MG};\overrightarrow{NP}\right)=\left(\overrightarrow{MG};\overrightarrow{GQ}\right)=180^0-\widehat{MGQ}\)
Áp dụng định lý hàm cos là tính được (\(GP=\dfrac{2}{3}NP\) ; tính MQ dựa vào hàm cos tam giác AMQ)
Đáp án C
Xét (AND) có MG ∩ AN = I
Mà AN ∈ (ABC)
⇒ MG ∩ (ABC) = I
Ta có G ϵ (BCD) và (GMN) (1)
Trong (ACD) có MN và CD cắt nhau tại H
H ϵ (BCD) và (GMN) (2)
Từ (1) và (2) suy ra GH là giao tuyến của (BCD) và (GMN)
Ta có: G là điểm chung thứ nhất của (MNG) và ( BCD)
Trong (ACD): MN cắt CD=I
I là điểm chung thứ hai của (MNG) và (BCD)
Vậy (MNG) cắt (BCD)= GI