K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 1

Do I là trọng tâm \(\Rightarrow\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\)

\(\Rightarrow\overrightarrow{IA}+\overrightarrow{AB}+\overrightarrow{IA}+\overrightarrow{AC}+\overrightarrow{IA}+\overrightarrow{AD}=\overrightarrow{0}\)

\(\Rightarrow\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}=3\overrightarrow{AI}\) (1)

Đặt \(\overrightarrow{AI}=x.\overrightarrow{AS}\) (2)

Từ giả thiết:

\(AM=2MB\Rightarrow\overrightarrow{AM}=2\overrightarrow{MA}+2\overrightarrow{AB}\Rightarrow\overrightarrow{AM}=\dfrac{2}{3}\overrightarrow{AB}\) \(\Rightarrow\overrightarrow{AB}=\dfrac{3}{2}\overrightarrow{AM}\) (3)

\(\overrightarrow{AN}=\overrightarrow{NC}=\overrightarrow{NA}+\overrightarrow{AC}\Rightarrow\overrightarrow{AN}=\dfrac{1}{2}\overrightarrow{AC}\) \(\Rightarrow\overrightarrow{AC}=2\overrightarrow{AN}\) (4)

\(\overrightarrow{AP}=3\overrightarrow{PD}=3\overrightarrow{PA}+\overrightarrow{AD}\Rightarrow\overrightarrow{AP}=\dfrac{3}{4}\overrightarrow{AD}\) \(\Rightarrow\overrightarrow{AD}=\dfrac{4}{3}\overrightarrow{AP}\) (5)

Thế (2);(3);(4);(5) vào (1):

\(\dfrac{3}{2}\overrightarrow{AM}+2\overrightarrow{AN}+\dfrac{4}{5}\overrightarrow{AP}=3x.\overrightarrow{AS}\)

\(\Rightarrow\overrightarrow{AS}=\dfrac{1}{2x}\overrightarrow{AM}+\dfrac{2}{3x}\overrightarrow{AN}+\dfrac{4}{15x}\overrightarrow{AP}\)

Theo định lý về đồng phẳng, do S, M, N, P đồng thẳng nên:

\(\dfrac{1}{2x}+\dfrac{2}{3x}+\dfrac{4}{15x}=1\) \(\Rightarrow x=\dfrac{43}{30}\)

Ủa có nhầm gì ko mà số xấu ta

NV
20 tháng 1

Định lý về đồng phẳng đã nói ở đây, phần này rất hay sử dụng trong toán tỉ lệ không gian nên em nhớ là tốt nhất:

Cho hình chóp S.ABCD có đáy là hình bình hành. Lấy điểm M sao cho \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightar... - Hoc24

 

22 tháng 9 2023

Tham khảo:

a) Ta có: M là trọng tâm của tam giác BCD

Nên M nằm trên trung tuyến BI (1)

Ta có: N là trọng tâm của tam giác ACD

Nên N nằm trên trung tuyến AI (2)

Từ (1) và (2) suy ra M và N thuộc mp (ABI)

b) Gọi H, K lần lượt là trung điểm của AG, BG

Ta có: HK // AB

          AB // MN

Suy ra MN // HK

Theo định lý Ta-let, ta có: \(\frac{{GM}}{{GH}} = \frac{{GN}}{{GK}} = \frac{{MN}}{{HK}}(1)\)

Ta có:\(\frac{{HK}}{{AB}} = \frac{1}{2},\frac{{MN}}{{AB}} = \frac{1}{3}\)

Do đó \(\frac{{MN}}{{AB}}:\frac{{HK}}{{AB}} = \frac{2}{3} \Rightarrow \frac{{MN}}{{HK}} = \frac{2}{3}(2)\)

Từ (1) và (2) suy ra\(\frac{{GM}}{{GH}} = \frac{2}{3}GH = \frac{1}{2}GA \Rightarrow \frac{{GM}}{{\frac{1}{2}GA}} = \frac{2}{3} \Rightarrow \frac{{GM}}{{GA}} = \frac{1}{3}\)

Chứng minh tương tự ta được\(\frac{{GN}}{{GB}} = \frac{1}{3}\)

c) Gọi H, K lần lượt là trung điểm của BC, BD

Tam giác AHD có:\(\frac{{HM}}{{HD}} = \frac{{HQ}}{{HA}} = \frac{1}{3}\)

Suy ra: QM // AD

Do đó, tam giác QGM đồng dạng với tam giác DGA

Nên D, G, Q thẳng hàng

Ta có: QM // AD nên \(\frac{{QM}}{{AD}} = \frac{{HM}}{{HD}} = \frac{{HQ}}{{HA}} = \frac{1}{3}\)

Mà \(\frac{{QM}}{{AD}} = \frac{{QG}}{{GD}}\)

Do đó:\(\frac{{QG}}{{GD}} = \frac{1}{3}\)

Chứng minh tương tự ta được\(\frac{{GP}}{{GC}} = \frac{1}{3}\)

Suy ra điều cần chứng minh.

24 tháng 3 2018

Đáp án C

Xét (AND) có MG ∩ AN =  I

 Mà AN ∈ (ABC)

MG(ABC) = I

5 tháng 7 2019

Trong tam giác BCD có: Plà trọng tâm, N là trung điểm BC .

Suy ra N; P; D  thẳng hàng.

Vậy thiết diện là tam giác MND..

Xét tam giác MND, ta có  M N = A B 2 = a ;  D M = D N = A D 3 2 = a 3

Do đó tam giác MND cân tại D.

Gọi H là trung điểm  MN  suy ra  DH và  MN vuông góc với nhau..

Diện tích tam giác  S Δ M N D = 1 2 M N . D H = 1 2 M N . D M 2 − M H 2 = a 2 11 4

Chọn C.

27 tháng 7 2017

Đáp án B

17 tháng 12 2019

18 tháng 2 2017

17 tháng 2 2021

1/ \(\overrightarrow{AM}=3\overrightarrow{AM}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\)

\(\Leftrightarrow2\overrightarrow{AM}+3\overrightarrow{MG}=\overrightarrow{0}\)

\(\Leftrightarrow2\overrightarrow{AM}+3\overrightarrow{MA}+3\overrightarrow{AG}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{AM}=3\overrightarrow{AG}\)

Ban tu ket luan

2/ Bạn coi lại đề bài, đẳng thức kia có vấn đề. 2k-1IB??

17 tháng 2 2021

\(\overrightarrow{IA}+2k-1+\overrightarrow{IB}+k\overrightarrow{IC}+\overrightarrow{ID}=0\)

26 tháng 2 2017