Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CMR: BC ⊥ (ADH) và DH = a.
● Δ ABC đều, H là trung điểm BC nên AH BC, AD BC
⇒ BC ⊥ (ADH) ⇒ BC ⊥ DH.
⇒ DH = d(D, BC) = a
CMR: DI ⊥ (ABC).
● AD = a, DH = a ΔDAH cân tại D.
- Mặt khác I là trung điểm của AH nên DI ⊥ AH.
● BC ⊥ (ADH) ⇒ BC ⊥ DI.
⇒ DI ⊥ (ABC).
a.
Do \(AB=AC\Rightarrow\Delta ABC\) cân tại A
\(\Rightarrow AM\) là trung tuyến đồng thời là đường cao
\(\Rightarrow AM\perp BC\) (1)
Mà \(\left\{{}\begin{matrix}AD\perp AB\left(gt\right)\\AD\perp AC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow AD\perp\left(ABC\right)\Rightarrow AD\perp BC\) (2)
(1);(2) \(\Rightarrow BC\perp\left(ADM\right)\)
b.
Từ A kẻ \(AE\perp DM\) (E thuộc DM)
Do \(BC\perp\left(ADM\right)\Rightarrow BC\perp AE\)
\(\Rightarrow AE\perp\left(BCD\right)\Rightarrow AE=d\left(A;\left(BCD\right)\right)\)
\(BC=\sqrt{AB^2+AC^2}=5\sqrt{2}\Rightarrow AM=\dfrac{1}{2}BC=\dfrac{5\sqrt{2}}{2}\)
Hệ thức lượng trong tam giác vuông ADM:
\(AE=\dfrac{AD.AM}{\sqrt{AD^2+AM^2}}=\dfrac{5\sqrt{3}}{3}\)
c.
Do \(AD\perp\left(ABC\right)\) theo cmt \(\Rightarrow AM\) là hình chiếu vuông góc của DM lên (ABC)
\(\Rightarrow\widehat{DMA}\) là góc giữa DM và (ABC)
\(tan\widehat{DMA}=\dfrac{AD}{AM}=\sqrt{2}\Rightarrow\widehat{DMA}\approx54^044'\)
a) Tam giác ABC cân đỉnh A và có I là trung điểm của BC nên AI ⊥ BC. Tương tự tam giác DBC cân đỉnh D và có có I là trung điểm của BC nên DI ⊥ BC. Ta suy ra:
BC ⊥ (AID) nên BC ⊥ AD.
b) Vì BC ⊥ (AID) nên BC ⊥ AH
Mặt khác AH ⊥ ID nên ta suy ra AH vuông góc với mặt phẳng (BCD).
Chứng minh tương tự, ta có tam giác AKD là tam giác cân tại K có KI là đường trung tuyến nên đồng thời là đường cao.
⇒ IK ⊥ AD (2)
Từ (1) và (2) suy ra; IK là đường vuông góc chung của hai đường thẳng AD và BC.
+) Hình chiếu vuông góc của SI trên mặt phẳng (ABC) là AI nên góc giữa SI và mặt phẳng (ABC) là:
(vì tam giác SIA vuông tại A nên góc SIA nhọn) ⇒
+) Xét tam giác SIA vuông tại A, nên:
+) Dựng hình bình hành ACBD, tam giác ABC đều nên tam giác ABD đều.
+) Ta có:
AC // BD; BD ⊂ (SBD) nên AC // (SBD).
mà SB ⊂ (SBD) nên d(AC, SB) = d(A, (SBD)).
- Gọi K là trung điểm đoạn BD, tam giác ABD đều suy ra AK ⊥ BD và mà BD ⊥ SA nên BD ⊥ (SAK).
- Dựng AH ⊥ SK; H ∈ SK.
- Lại có AH ⊥ BD suy ra AH ⊥ (SBD).
- Vậy d(A, (SBD)) = AH.
- Xét tam giác SAK vuông tại vuông tại A, đường cao AH ta có:
- Vậy d(AC, SB) = d(A, (SBD))
Do ABC cân \(\Rightarrow AM\perp BC\)
Mà \(DA\perp\left(ABC\right)\Rightarrow DA\perp BC\)
\(\Rightarrow BC\perp\left(ADM\right)\Rightarrow BC\perp AH\)
\(\Rightarrow AH\perp\left(BCD\right)\)
b.
Gọi N là trung điểm AB \(\Rightarrow MN\) là đường trung bình tam giác ABC
\(\Rightarrow\left\{{}\begin{matrix}MN||AC\\MN=\dfrac{1}{2}AC=\dfrac{a}{2}\end{matrix}\right.\)
\(\Rightarrow\widehat{\left(AC;DM\right)}=\widehat{\left(MN;DM\right)}=\widehat{DMN}\)
\(DN=\sqrt{AD^2+AN^2}=\sqrt{AD^2+\left(\dfrac{AB}{2}\right)^2}=\dfrac{a\sqrt{89}}{10}\)
\(AM=\sqrt{AB^2-\left(\dfrac{BC}{2}\right)^2}=\dfrac{4a}{5}\Rightarrow DM=\sqrt{AD^2+AM^2}=\dfrac{4a\sqrt{2}}{5}\)
Định lý hàm cos cho tam giác DMN:
\(cos\widehat{DMN}=\dfrac{DM^2+MN^2-DN^2}{2DM.MN}=\dfrac{2\sqrt{2}}{5}\)
\(\Rightarrow\widehat{DMN}\approx55^033'\)
c.
M là trung điểm BC nên hiển nhiên \(G_1\) nằm trên AM và \(G_2\) nằm trên DM
Do \(G_1\) là trọng tâm ABC \(\Rightarrow\dfrac{AG_1}{AM}=\dfrac{2}{3}\Rightarrow\dfrac{MG_1}{AM}=\dfrac{1}{3}\)
Do \(G_2\) là trọng tâm DBC \(\Rightarrow\dfrac{DG_2}{DM}=\dfrac{2}{3}\Rightarrow\dfrac{MG_2}{DM}=\dfrac{1}{3}\)
\(\Rightarrow\dfrac{MG_1}{AM}=\dfrac{MG_2}{DM}\Rightarrow G_1G_2||DA\) (Talet đảo)
Mà \(DA\perp\left(ABC\right)\Rightarrow G_1G_2\perp\left(ABC\right)\)
Tính khoảng cách giữa AD và BC.
● Trong ΔADH vẽ đường cao HK tức là HK ⊥ AD (1)
- Mặt khác BC ⊥ (ADH) nên BC ⊥ HK (2)
- Từ (1) và (2) ta suy ra d(AD, BC) = HK.
● Xét ΔDIA vuông tại I ta có:
● Xét ΔDAH ta có: