K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2019

Đáp án A

Vì B C 2 = B A 2 + A C 2 nên ∆ A B C vuông tại A.

Gọi  K là hình chiếu của A lên BC, H là hình chiếu của A lên DK.

Ta có  1 A H 2 = 1 A D 2 + 1 A K 2 = 1 A D 2 + 1 A B 2 + 1 A C 2  

= 1 4 2 + 1 4 2 + 1 3 2 = 17 72 ⇒ d A ; A B C D = A H = 72 17 = 12 34

26 tháng 7 2017

Đáp án A

29 tháng 1 2019

Đáp án B

Ta có    A B 2 + A C 2 = B C 2 ⇒ tam giác  ABC vuông tại A.

Trong (ABC) kẻ AM vuông góc tại   M ⇒ 1 A M 2 = 1 A B 2 + 1 A C 2

Trong (DAM) kẻ A H ⊥ D M  tại H.

Ta có  

  D A ⊥ B C ; A M ⊥ B C ⇒ D A M ⊥ B C ⇒ D A M ⊥ D B C

D A M ⊥ D B C D A M ∩ D B C = D M A H ⊂ D A M ; A H ⊥ D M ⇒ A H ⊥ D B C

  ⇒ d A ; D B C = A H

Tam giác DAM vuông tại A có AH là đường cao

⇒ 1 A H 2 = 1 A M 2 + 1 A D 2 = 1 A B 2 + 1 A C 2 + 1 A D 2 = 1 3 2 + 1 4 2 + 1 4 2 = 17 72 ⇒ A H = 12 34

20 tháng 7 2017

 

 

 

 

 

 

Chọn hệ trục tọa độ Oxyz. Có O = A, AB = Ox, AC = Oy, AD = Oz, AD = 2 α tan 60 o = 2 a 3 , N H = 1 2 - 1 3 B C = 1 6 B C = 1 2 N C

Từ M kẻ MH song song với AC ta có MH = a; CP = 2MH = 2a ⇒ AP = 4a

PT của mặt phẳng (BCD) là x 2 a + y 2 a + z 2 3 a = 1 . Vậy khoảng cách từ P ( 0;4a;0 ) đến (BCD) là:

1 1 4 a 2 + 1 4 a 2 + 1 12 a 2 = a 12 7 = 2 a 21 7

Đáp án cần chọn là A

 

29 tháng 6 2019

Đáp án A

15 tháng 12 2019

Chọn D.

Phương pháp: Tứ diện ABCD có các cặp cạnh đối diện bằng nhau là tứ diện gần đều.

Cách giải: Theo giả thiết suy ra: 

Theo tính chất của tứ diện gần đều tâm mặt cầu ngoại tiếp I của tứ diện ABCD là trung điểm OD

 

24 tháng 9 2019

2 tháng 8 2017

Gọi H là trung điểm của AC

Đỉnh S cách đều các điểm A, B, C 

Xác đinh được 

Ta có MH//SA 

Gọi I là trung điểm của AB 

 và chứng minh được 

Trong tam giác vuông SHI tính được 

Chọn A.

26 tháng 8 2019

Đáp án C

Phương pháp giải:

Áp dụng công thức tính nhanh thể tích của tứ diện gần đều, đưa bài toán tính khoảng cách về bài toán tìm thể tích chia cho diện tích đáy (tính theo công thức Hê – rông)

Lời giải: