K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2019

20 tháng 12 2023

A B C H D E K I

a/

Ta có

\(AB\perp AC\Rightarrow AD\perp AC;HE\perp AC\) => AD//HE

\(AC\perp AB\Rightarrow AE\perp AB,HD\perp AB\) => AE//HD

=> ADHE là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Mà \(\widehat{A}=90^o\) 

=> ADHE là hình CN

b/

Xét tg vuông ADH có

\(DH=\sqrt{AH^2-AD^2}\) (Pitago)

\(\Rightarrow DH=\sqrt{5^2-4^2}=3cm\)

\(\Rightarrow S_{ADHE}=AD.DH=4.3=12cm^2\)

c/

Ta có

DB=DI (gt); DH=DK (gt) => BKIH là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

Xét tg AKH có

\(HD\perp AB\Rightarrow AD\perp HK\) (1)

BKIH là hình bình hành (cmt) => KI//BH (cạn đối hbh)

Mà \(AH\perp BC\left(gt\right)\Rightarrow BH\perp AH\)

\(\Rightarrow KI\perp AH\) (2)

Từ (1) và (2) => I là trực tâm của tg AKH => \(AK\perp HI\) (trong tg 3 đường cao đồng quy)

 

7 tháng 10 2017

Đáp án là B

7 tháng 12 2017

13 tháng 1 2018

10 tháng 6 2018

16 tháng 8 2019

Đáp án B

10 tháng 5 2017

Đáp án A