Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
$S=3^0+3^2+3^4+...+3^{2002}$
$3^2S=3^2+3^4+3^6+...+3^{2004}$
$3^2S-S=(3^2+3^4+3^6+...+3^{2004})-(3^0+3^2+3^4+...+3^{2002})$
$8S=3^{2004}-3^0=3^{2004}-1$
$S=\frac{3^{2004}-1}{8}$
b.
$S=(3^0+3^2+3^4)+(3^6+3^8+3^{10})+....+(3^{1998}+3^{2000}+3^{2002})$
$=(3^0+3^2+3^4)+3^6(3^0+3^2+3^4)+....+3^{1998}(3^0+3^2+3^4)$
$=(3^0+3^2+3^4)(1+3^6+...+3^{1998})$
$=91(1+3^6+...+3^{1998})=7.13(1+3^6+...+3^{1998})\vdots 7$
Ta có đpcm.
b: \(S=3^0+3^2+3^4+...+3^{2002}\)
\(=\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)
\(=91\cdot\left(1+...+3^{1998}\right)⋮7\)
Ta có: \(\dfrac{1}{4}=\dfrac{10}{40}=\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}\)
Mà \(\dfrac{1}{31}>\dfrac{1}{40}\)
\(\dfrac{1}{32}>\dfrac{1}{40}\)
\(\dfrac{1}{33}>\dfrac{1}{40}\)
\(\dfrac{1}{34}>\dfrac{1}{40}\)
\(\dfrac{1}{35}>\dfrac{1}{40}\)
\(\dfrac{1}{36}>\dfrac{1}{40}\)
\(\dfrac{1}{37}>\dfrac{1}{40}\)
\(\dfrac{1}{38}>\dfrac{1}{40}\)
\(\dfrac{1}{39}>\dfrac{1}{40}\)
\(\Rightarrow\) \(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{39}+\dfrac{1}{40}>\dfrac{10}{40}=\dfrac{1}{4}\)
Vậy \(S>\dfrac{1}{4}\)
Nếu đúng là zậy thì mk biết làm.
A = 3 + 32 + 33 + ... + 32004
A = ( 3 + 32 + 33 + 34 ) + ... + ( 32001 + 32002 + 32003 + 32004 )
A = 3( 1 + 3 + 32 + 33 ) + ... + 32001( 1 + 3 + 32 + 39 )
A = 3.40 + ... + 32001.40
A = ( 3 + 35 + ... 32001) . 40
=> A chia hết cho 40
\(S=\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+...+3^8\right)⋮4\)
\(S=\left(1+3+3^2\right)+...+3^7\left(1+3+3^2\right)\)
\(=13\left(1+...+3^7\right)⋮13\)
\(S=1+3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\)
\(S=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+\left(3^6+3^7\right)+\left(3^8+3^9\right)\)
\(S=4+3^2\left(1+3\right)+3^4\left(1+3\right)+3^6\left(1+3\right)+3^8\left(1+3\right)\)
\(S=4+3^2.4+3^4.4+3^6.4+3^8.4\)
\(S=4\left(3^2+3^4+3^6+3^8\right)\)
\(4⋮4\\ \Rightarrow4\left(3^2+3^4+3^6+3^8\right)⋮4\\ \Rightarrow S⋮4\)
Ta có: S = 30 + 32 + 34 + 36 + … + 32002 (1)
Nhân cả hai vế của (1) cho 9, ta được:
9S = 32(30 + 32 + 34 + 36 + … + 32002)
9S = 32 + 34 + 36 + 38 + … + 32004 (2)
Lấy (2) - (1), ta được:
9S - S = (32 + 34 + 36 + 38 + … + 32004) - (30 + 32 + 34 + 36 + … + 32002)
8S = 32004 - 30
8S = 32004 - 1
Khi đó:
8S - 32004 - 1 = 32004 - 1 - 32004 - 1
8S - 32004 - 1 = -2