K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2017

ta có A có 100 số hạng 
A=1+(2-3)+(-4+5)+(6-7)+(-8+9)+.......+(98+-99)-100
A=1+-1+1+-1+1+....+-1-100
A=-99
A chia hết cho 3
ko chia hết cho 2,5
-99=-11.-3.-3
 suy ra -99 có 16 ước nguyên
8 ước tự nhiên

29 tháng 1 2018

\(A=1-2+3-4+....+99-100\) ( \(A\) có \(\left(100-1\right)\div1+1=100\) số hạng )

\(A=\left(1-2\right)+\left(3-4\right)+....+\left(99-100\right)\) ( \(A\) có \(100\div2=50\) nhóm )

\(A=\left(-1\right)+\left(-1\right)+....+\left(-1\right)\) ( \(A\) có \(50\) số \(\left(-1\right)\) )

\(A=\left(-1\right).50\)

\(A=-50\)

ta thấy \(-50⋮2;5\) và     \(-50\) ko chia hết cho \(3\)

29 tháng 12 2019

\(A=1-2+3-4+...+99-100=\left(1-2\right)+\left(3-4\right)+...+\left(99-100\right)=\left(-1\right)\times50=-50\)

(vì tổng A có 100 số nên có 50 cặp số)

A=-50 nên A chia hết cho 2, không chia hết cho 3,4

29 tháng 12 2019

\(A=1-2+3-4+5-6+...+99-100\)

Ta có: \(100:2=50\)( cặp số )

\(\Rightarrow A=\left(1-2\right)+\left(3-4\right)+...+\left(99-100\right)\)

\(\Rightarrow A=-1+-1+...+-1\)( có 50 số - 1 )

\(\Rightarrow A=-50\)

Vậy A chia hết cho 2, A không chia hết cho 3 và A không chia hết cho 4.

11 tháng 1 2022

 

17 tháng 2 2022

có cái lol

 

 

13 tháng 2 2021

a) A=(1+2-3-4)+(5+6-7-8)+...+(97+98-99-100)

A=(-4)25=-100

=> A chia hết 2;5 không chia hết 3

b, A = 22.52

A có 9 ước tự nhiên và 18 ước nguyên

13 tháng 2 2021

Sao bạn trả lời câu b đơn giản thế?

26 tháng 1 2016

Bạn nhóm 4 số liên tiếp vào 1cặp ta được 25 cặp

A=(1+2-3-4)+(5+6-7-8)+...+(97+98-99-100)

A=(-4)25=-100

=> Achia hết 2;5 không chia hết 3

b,

A = 2^2*5^2

A có 9 ước tự nhiên và 18 ước nguyên

26 tháng 1 2016

vat nuoc o oc ra ma nghi

13 tháng 2 2023

\(A\text{=}1-2+3-4+...+99-100\)

\(A\text{=}\left(1-2+3-4\right)+....+\left(97-98+99-100\right)\)

\(A\text{=}-2.25\)

\(A\text{=}-50\)

\(\Rightarrow A⋮2⋮5\)

\(\Rightarrow A⋮̸3\)

13 tháng 2 2023

giải giùm luôn ạ

Giải:

a) \(M=21^9+21^8+21^7+...+21+1\) 

Do \(21^n\) luôn có tận cùng là 1

\(\Rightarrow M=21^9+21^8+21^7+...+21+1\) 

Tân cùng của M là:

     \(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0

\(\Rightarrow M⋮10\) 

\(\Leftrightarrow M⋮2;5\) 

b) \(N=6+6^2+6^3+...+6^{2020}\) 

\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\) 

\(N=6.7+6^3.7+...+6^{2019}.7\) 

\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\) 

\(\Rightarrow N⋮7\) 

Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\) 

Mà \(6⋮̸9\) 

\(\Rightarrow N⋮̸9\) 

c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\) 

\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\) 

\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\) 

\(\Rightarrow P⋮20\) 

\(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\) 

\(P=4.21+...+4^{22}.21\) 

\(P=21.\left(4+...+4^{22}\right)⋮21\) 

\(\Rightarrow P⋮21\) 

d) \(Q=6+6^2+6^3+...+6^{99}\) 

\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\) 

\(Q=6.43+...+6^{97}.43\) 

\(Q=43.\left(6+...+6^{97}\right)⋮43\) 

\(\Rightarrow Q⋮43\) 

Chúc bạn học tốt!

19 tháng 7 2015

a) 136 + 420 có chữ số tận cùng là 6 chia hết cho 2 và không chia hết cho 5

b) 625 - 450 có chữ số tận cùng là 5 chia hết cho 5 và không chia hết cho 2

c) 1.2.3.4.5.6 + 42

Vì 5.6 có tận cùng = 0 => 1.2.3.4.5.6 có tận cùng = 0 

=> 1.2.3.4.5.6 + 42 có tận cùng = 2 chia hết cho 2 và không chia hết cho 5.

d) tương tự câu c, 1.2.3.4.5.6 có tận cùng = 0

=> 1.2.3.4.5.6 - 35 có tận cùng = 5 chia hết cho 5 và không chia hết cho 2 

19 tháng 7 2015

bn nhìn vào chữ số tận cùng là bít