Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1/30+1/31+1/32+1/33+...+1/59+1/60
S có 31 phân số,ta thấy:
1/30>1/62 1/31>1/62 1/32>1/62 ............ 1/60>1/62
Vậy:
S>31.1/62
S>31/62
S>1/2
Vậy S>1/2
Chúc em học tốt^^
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(A=\left(\frac{2}{2}-\frac{1}{2}\right)\left(\frac{3}{3}-\frac{1}{3}\right)...\left(\frac{19}{19}-\frac{1}{19}\right)\left(\frac{20}{20}-\frac{1}{20}\right)\)
\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{18}{19}.\frac{19}{20}\)
\(A=\frac{1.2.3...18.19}{2.3.4...19.20}\)
\(A=\frac{1}{20}\Leftrightarrow A>\frac{1}{21}\)
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{20}\right)\)
\(A=\frac{1}{2}.\frac{2}{3}......\frac{19}{20}=\frac{1}{20}>\frac{1}{21}\)
\(\text{Vậy: A lớn hơn 1/21}\)
ta có \(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right).......\left(\frac{1}{10}-1\right)\)
\(A=-\left(\frac{1}{2}.\frac{2}{3}.....\frac{9}{10}\right)\)
\(A=-\frac{1}{10}\)
vi\(-\frac{1}{10}>-\frac{1}{9}\)
do đó A>\(\frac{-1}{9}\)
A = 1/1×2 + 1/2×3 + 1/3×4 + .. + 1/99×100
A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
A = 1 - 1/100 < 1
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=1\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=1-\frac{1}{100}< 1\)
=> ĐPCM
Ta có: \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(A=\frac{-3}{2^2}.\frac{-8}{3^2}.\frac{-15}{4^2}...\frac{-9900}{100^2}\)
\(A=\frac{\left(-1\right).3}{2^2}.\frac{\left(-2\right).4}{3^2}.\frac{\left(-3\right).5}{4^2}...\frac{\left(-99\right).101}{100^2}\)
\(A=\cdot\frac{\left(-1\right).\left(-2\right).\left(-3\right)...\left(-99\right)}{2.3.4...100}.\frac{3.4.5...101}{2.3.4...100}\)
\(A=\left(-\frac{1}{100}\right).\frac{101}{2}\)
\(A=-\frac{101}{200}\)
\(1.A=\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+...+\frac{1}{3^{98}}-\frac{1}{3^{100}}\)(1)
\(3^2.A=\frac{3^2}{3^2}-\frac{1}{3^2}+\frac{1}{3^4}-\frac{1}{3^6}+...+\frac{1}{3^{96}}-\frac{1}{3^{98}}\)(2)
cộng lai (phân giữa triệt tiêu hết)
\(\left(1+9\right)A=1-\frac{1}{3^{100}}< 1\)
=>\(10A< 1\Rightarrow A< 0,1\)