Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{a+b+c+d}=1\\ \Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\Rightarrow a=b=c=d\\ \Rightarrow VT=\left(\dfrac{2019a+2020a-2021a}{2019a+2020a-2021a}\right)^3=1^3=1=\dfrac{a^2}{a\cdot a}=VP\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\Rightarrow\frac{2019a^2}{2019c^2}=\frac{2020b^2}{2020d^2}=\)
\(=\frac{2019a^2+2020b^2}{2019c^2+2020d^2}=\frac{2019a^2-2020b^2}{2019c^2-2020d^2}\Rightarrow\frac{2019a^2+2020b^2}{2019a^2-2020b^2}=\frac{2019c^2+2020d^2}{2019c^2-2020d^2}\)
Bạn ơi tham khảo thử cách này nhé !
Từ \(\frac{a}{b}=\frac{c}{d}\)( bài cho )
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó :
+) \(\frac{2019a^2+2020b^2}{2019a^2-2020b^2}=\frac{2019\left(bk\right)^2+2020b^2}{2019\left(bk\right)^2-2020b^2}=\frac{b^2\left(2019k^2+2020\right)}{b^2\left(2019k^2-2020\right)}=\frac{2019k^2+2020}{2019k^2-2020}\)
+) \(\frac{2019c^2+2020d^2}{2019c^2-2020d^2}=\frac{2019\left(dk\right)^2+2020d^2}{2019\left(dk\right)^2-2020d^2}=\frac{d^2\left(2019k^2+2020\right)}{d^2\left(2019k^2-2020\right)}=\frac{2019k^2+2020}{2019k^2-2020}\)
Sửa đề: \(\dfrac{2018a-2019b}{2019a+2020b}=\dfrac{2018c-2019d}{2019c+2020d}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2020a}{2020b}=\dfrac{2020c}{2020d}=\dfrac{2019a}{2019c}=\dfrac{2019b}{2019d}=\dfrac{2018a}{2018c}=\dfrac{2018b}{2018d}=\dfrac{2018a-2019b}{2018c-2019d}=\dfrac{2019a+2020b}{2019c+2020d}\\ \Leftrightarrow\dfrac{2018a-2019b}{2019a+2020b}=\dfrac{2018c-2019d}{2019c+2020d}\)
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=\dfrac{2019b+2020c-2021d}{2019c+2020d-2021e}\left(1\right)\\ \text{Đặt }\dfrac{a}{b}=\dfrac{b}{c}=k\Leftrightarrow a=bk;b=ck\Leftrightarrow a=ck^2\\ \Leftrightarrow\dfrac{a^2}{bc}=\dfrac{c^2k^4}{c^2k}=k^3=\left(\dfrac{a}{b}\right)^3\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow\left(\dfrac{2019b+2020c-2021d}{2019c+2020d-2021e}\right)^3=\dfrac{a^2}{bc}\)
Từ a/b=c/d =>a/c=b/d
Đặt a /c =b /d =k =>a =ck, b= dk
=>a2020/b2020 =(ck)2020/(dk)2020 = c2020 . k2020/ d2020 .k2020 = c2020/d2020
(a-c)2020/ (b-d)2020 = (ck-c)2020/ (dk-d)2020 =[ c.(k-1)]2020/ [ d.(k-1)]2020 =c2020.(k-1)2020 / d2020. (k-1)2020 = c2020/ d2020
=> a2020/ b2020 = (a-c)2020 / (b-d)2020 (vì đều bằng c2020/d2020)
Từ \(\frac{2019a+2020c}{2019a-2021c}=\frac{2019b+2020d}{2019b-2021d}\)
=> \(\frac{2019a-2021c+4041c}{2019a-2021c}=\frac{2019b-2021d+4041d}{2019b-2021d}\)
=> \(1+\frac{4041c}{2019a-2021c}=1+\frac{4041d}{2019b-2021d}\)
=> \(\frac{4041c}{2019a-2021c}=\frac{4041d}{2019b-2021d}\)
=> \(4041c\left(2019b-2021d\right)=4041d\left(2019a-2021c\right)\)
=> \(c\left(2019b-2021d\right)=d\left(2019a-2021c\right)\)( rút 4041 ở cả hai vế )
=> \(2019bc-2021cd=2019ad-2021cd\)
=> \(2019ad-2021cd-2019bc+2021cd=0\)
=> \(2019\left(ad-bc\right)=0\)
=> \(ad-bc=0\)
=> \(ad=bc\)
=> \(\frac{a}{b}=\frac{c}{d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)
+) \(\left(\frac{a+b}{c+d}\right)^{2020}=\left(\frac{kb+b}{kd+d}\right)^{2020}=\left[\frac{b\left(k+1\right)}{d\left(k+1\right)}\right]^{2020}=\left(\frac{b}{d}\right)^{2020}=\frac{b^{2020}}{d^{2020}}\)(1)
+) \(\frac{a^{2020}+b^{2020}}{c^{2020}+d^{2020}}=\frac{\left(kb\right)^{2020}+b^{2020}}{\left(kd\right)^{2020}+d^{2020}}=\frac{k^{2020}b^{2020}+b^{2020}}{k^{2020}d^{2020}+d^{2020}}=\frac{b^{2020}\left(k^{2020}+1\right)}{d^{2020}\left(k^{2020}+1\right)}=\frac{b^{2020}}{d^{2020}}\)(2)
Từ (1) và (2) ta có điều phải chứng minh