K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 7 2019

Bạn tham khảo tại link sau:

Câu hỏi của Nguyễn Thanh Huyền - Toán lớp 7 | Học trực tuyến

7 tháng 11 2021

không cs số 0 đâu 

7 tháng 11 2021

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Sửa: \(\dfrac{3a^2+10b^2-ab}{7a^2+b^2+5ab}=\dfrac{3b^2k^2+10b^2-b^2k}{7b^2k^2+b^2+5b^2k}=\dfrac{b^2\left(3k^2+10-k\right)}{b^2\left(7k^2+1+5k\right)}=\dfrac{3k^2+10-k}{7k^2+1+5k}\left(1\right)\)

\(\dfrac{3c^2+10d^2-cd}{7c^2+d^2+5cd}=\dfrac{3d^2k^2+10d^2-d^2k}{7d^2k^2+d^2+5d^2k}=\dfrac{d^2\left(3k^2+10-k\right)}{d^2\left(7k^2+1+5k\right)}=\dfrac{3k^2+10-k}{7k^2+1+5k}\left(2\right)\)

\(\left(1\right)\left(2\right)\RightarrowĐpcm\)

Ta có:

\(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\Rightarrow\frac{3a^2+5ab}{7a^2-10b^2}=\frac{3.\left(bk\right)^2+5.bkb}{7\left(bk\right)^2-10b^2}=\frac{3b^2k^2+5kb^2}{7b^2k^2-10b^2}=\frac{kb^2\left(3k+5\right)}{b^2\left(7k^2-10\right)}=\frac{k\left(3k+5\right)}{\left(7k^2-10\right)}\left(1\right)\)

\(\frac{3c^2+5cd}{7c^2-10d^2}=\frac{3.\left(dk\right)^2+5dkd}{7\left(dk\right)^2-10d^2}=\frac{3d^2k^2+5kd^2}{7d^2k^2-10d^2}=\frac{kd^2\left(3k+5\right)}{d^2\left(7k^2-10\right)}=\frac{k\left(3k+5\right)}{\left(7k^2-10\right)}\left(2\right)\)

Từ (1) và (2)

⇒ĐPCM

AH
Akai Haruma
Giáo viên
6 tháng 7 2019

Lời giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt\)

Khi đó :

\(\frac{3a^2+5ab}{7a^2-10b^2}=\frac{3(bt)^2+5.bt.b}{7(bt)^2-10b^2}=\frac{b^2(3t^2+5t)}{b^2(7t^2-10)}=\frac{3t^2+5t}{7t^2-10}\)

\(\frac{3c^2+5cd}{7c^2-10d^2}=\frac{3(dt)^2+5dt.d}{7(dt)^2-10d^2}=\frac{d^2(3t^2+5t)}{d^2(7t^2-10)}=\frac{3t^2+5t}{7t^2-10}\)

\(\Rightarrow \frac{3a^2+5ab}{7a^2-10b^2}=\frac{3c^2+5cd}{7c^2-10d^2}\) (đpcm)

7 tháng 1

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Ta có: \(VT=\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7bk^2+3bkb}{11bk^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\)

\(VP=\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7dk^2+3dkd}{11dk^2-8d^2}=\dfrac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}=\dfrac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\)

\(\Rightarrow VT=VP\)

Vậy \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\left(đpcm\right)\)

7 tháng 1

Nâng cao r 

mk chịu :)

 

10 tháng 10 2017

a/ Đặt :

\(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có :

\(\dfrac{2a+7b}{3a-4b}=\dfrac{2bk+7b}{3bk-4b}=\dfrac{b\left(2k+7\right)}{b\left(3k-4\right)}=\dfrac{2k+7}{3k-4}\left(1\right)\)

\(\dfrac{2c+7d}{3c-4d}=\dfrac{2dk+7d}{3dk-4d}=\dfrac{d\left(2k+7\right)}{d\left(3k-4\right)}=\dfrac{2k+7}{3k-4}\)\(\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

b/ tương tự

11 tháng 8 2017

Đặt:

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2bk+5b}{3bk-4b}=\dfrac{b\left(2k+5\right)}{b\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\)

\(\Rightarrow\dfrac{2c+5d}{3c-4d}=\dfrac{2dk+5d}{3dk-4d}=\dfrac{d\left(2k+5\right)}{d\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\)

\(\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)

\(\dfrac{2016a-2017b}{2017c+2018d}=\dfrac{2016bk-2017b}{2017dk+2018d}=\dfrac{b\left(2016k-2017\right)}{d\left(2017k+2018\right)}\)

\(\dfrac{2016c-2017d}{2017a+2018b}=\dfrac{2016dk-2017d}{2017bk+2018b}=\dfrac{d\left(2016k-2017\right)}{b\left(2017k+2018\right)}\)

\(\Rightarrow\dfrac{2016a-2017b}{2017c+2018d}=\dfrac{2016c-2017d}{2017a+2018b}\)

\(\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{7bk^2+5bdk^2}{7bk^2-5bdk^2}=\dfrac{k^2\left(7b+5bd\right)}{k^2\left(7b-5bd\right)}=\dfrac{7b+5bd}{7b-5bd}\)

\(\dfrac{7b^2+5ab}{7b^2-5ab}=\dfrac{7b^2+5kb^2}{7b^2-5kb^2}=\dfrac{b^2\left(7+5k\right)}{b^2\left(7-5k\right)}=\dfrac{7+5k}{7-5k}\)

Hình như sai sai

20 tháng 12 2017

a) Ta co: a/b = c/d= k

=> a=bk

c=dk

Ta co: a-b/a+b = bk-b/bk+b = b(k-1)/b(k+1) = k-1/k+1 (1)

Ta co: c-d/c+d = dk-d/dk+d = d(k-1)/d(k+1) = k-1/k+1 (2)

Tu (1) va (2)

=> a-b/a+b=c-d/c+d

20 tháng 12 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) (*)

a) Từ (*) ta có:

\(\dfrac{a-b}{a+b}=\dfrac{bk-b}{bk+b}=\dfrac{b\left(k-1\right)}{b\left(k+1\right)}=\dfrac{k-1}{k+1}\) (1)

\(\dfrac{c-d}{c+d}=\dfrac{dk-d}{dk+d}=\dfrac{d\left(k-1\right)}{d\left(k+1\right)}=\dfrac{k-1}{k+1}\) (2)

Từ (1) và (2) suy ra \(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)

b) Từ (*) ta có:

\(\dfrac{7a-4b}{3a+5b}=\dfrac{7bk-4b}{3bk+5b}=\dfrac{b\left(7k-4\right)}{b\left(3k+5\right)}=\dfrac{7k-4}{3k+5}\) (3)

\(\dfrac{7c-4d}{3c+5d}=\dfrac{7dk-4d}{3dk+5d}=\dfrac{d\left(7k-4\right)}{d\left(3k+5\right)}=\dfrac{7k-4}{3k+5}\) (4)

Từ (3) và (4) suy ra \(\dfrac{7a-4b}{3a+5b}=\dfrac{7c-4d}{3c+5d}\)

c) Từ (*) ta có:

\(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\) (5)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (6)

\(\dfrac{\left(c-a\right)^2}{\left(d-b\right)^2}=\dfrac{\left[\left(dk\right)-\left(bk\right)\right]^2}{\left(d-b\right)^2}=\dfrac{\left[k\left(d-b\right)\right]^2}{\left(d-b\right)^2}=k^2\) (7)

Từ (5), (6) và (7) suy ra \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(c-a\right)^2}{\left(d-b\right)^2}\)