Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1
Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)
=> ĐPCM
Câu 2
Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)
=> ĐPCM
Câu 3
Câu 3
Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)
=> ĐPCM
Câu 4
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)
Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)
Từ (1) và (2) => ĐPCM
Áp dụng tc dtsbn:
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}\Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{a^2-b^2}{c^2-d^2}\\ \Rightarrow\dfrac{a^2+b^2}{a^2-b^2}=\dfrac{c^2+d^2}{c^2-d^2}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)
<=>(\(a^2+b^2\))cd=ab(\(c^2+d^2\))
<=>\(a^2cd+b^2cd=abc^2+abd^2\)
<=>\(a^2cd-abc^2-abd^2+b^2cd=0\)
<=>ac(ad-bc)-bd(ad-bc)=0
<=>ac-bd=0
<=>ac=bd
=>\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\frac{a}{b}=\frac{b}{c}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{ab}{bc}\)
\(=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ab}{bc}=\frac{a}{c}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+b^2}{b^2+c^2}\)
Vậy \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\) (dpcm)
Đặt ab=cd=kab=cd=k⇒⇒{a=bkc=dk{a=bkc=dk
a)Xét VT=aa−b=bkbk−b=bkb(k−1)=kk−1(1)VT=aa−b=bkbk−b=bkb(k−1)=kk−1(1)
Xét VP=cc−d=dkdk−d=dkd(k−1)=kk−1(2)VP=cc−d=dkdk−d=dkd(k−1)=kk−1(2)
Từ (1) và (2) ta có điều phải chứng minh
b)Xét VT=ac=bkdk=bd(1)VT=ac=bkdk=bd(1)
Xét VP=a+bc+d=bk+bdk+d=b(k+1)d(k+1)=bd(2)VP=a+bc+d=bk+bdk+d=b(k+1)d(k+1)=bd(2)
Từ (1) và (2) ta có điều phải chứng minh
\(\frac{\overline{ab}}{\overline{bc}}=\frac{b}{c}=\frac{10a+b}{10b+c}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{\overline{ab}}{\overline{bc}}=\frac{b}{c}=\frac{10a+b}{10b+c}=\frac{10a+b-b}{10b+c-c}=\frac{10a}{10b}=\frac{a}{b}\)
\(\Rightarrow\frac{b}{c}=\frac{a}{b}\Rightarrow b^2=ac\)
\(\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}=\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a.c}{b.d}=\frac{a^2+c^2}{b^2+d^2}\left(ĐPCM\right)\)