Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác ABC có AB=AC => tam giác ABC cân tại A
=> đường p/g AM của góc BAC còn là đường cao
=> AM vuông góc vs BC
Do\(\hept{\begin{cases}AM\perp BC\\b//AM\end{cases}\Rightarrow b\perp BC}\)
ta có a//BC mà b\(\perp\)BC
=> a \(\perp\)b (dpcm)
tk mk nha
*****CHÚC BẠN HỌC GIỎI *****
ΔABC cân tại A
mà AM là phân giác
nên AM vuông góc BC
=>a//BC
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
=>\(\widehat{BAM}=\widehat{CAM};\widehat{AMB}=\widehat{AMC}\)
\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC
\(\widehat{BAM}=\widehat{CAM}\)
AM nằm giữa AB,AC
Do đó: AM là phân giác của \(\widehat{BAC}\)
b: Xét ΔMBA vuông tại M và ΔMCD vuông tại M có
MB=MC
\(\widehat{MBA}=\widehat{MCD}\)
Do đó: ΔMBA=ΔMCD
=>MA=MD
=>M là trung điểm của AD
c: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
=>BD//AC
BD//AC
AC\(\perp\)BH
Do đó: BD\(\perp\)BH
=>\(\widehat{HBD}=90^0\)
a)Xét tam giác AHB và tam giác AHE ( đều vuông tại H )
AH là cạnh chung
\(\widehat{BAH}=\widehat{HAE}\)(Vì AD là tia phân giác)
\(\Rightarrow\Delta AHB=\Delta AHE\)(cạnh góc vuông và góc nhọn kề cạnh ấy)
b)Vì AH vừa là tia phân giác vừa là tia vuông góc
\(\Rightarrow\Delta ABE\) là tam giác cân mà lại có góc BAE bằng 600
\(\Rightarrow\Delta ABE\) là tam giác đều\(\Rightarrow\)AH cũng là đường trung tuyến \(\Rightarrow\)BH=HE(1)
Vì KH//AB\(\Rightarrow\widehat{BAE}=\widehat{HKE};\widehat{KHE}=\widehat{ABE}\)
Mà góc KEH chung
\(\Rightarrow\Delta KHE\) là tam giác đều
\(\Rightarrow KH=HE\left(2\right)\)
Từ (1) và (2) suy ra:KH=HB=HE
Theo định lý nếu trong tam giác cạnh đối diện với cạnh huyền bằng nửa cạnh huyền thì tam giác đó vuông
\(\Rightarrow\Delta BKE\) vuông tại K
\(\Rightarrow\widehat{BKE}=90^0\)
Vì tam giác ABC cân tại A \(\Rightarrow\widehat{B}=\widehat{C}\) mà \(\widehat{B}=50\)độ \(\Rightarrow\widehat{C}=50\)độ
ADTC tổng 3 góc trong 1 tam giác suy ra góc A = 180 - 2 lần góc B = 180- 2*50=80
b) Xét tam giác AMB và tam giác AMC có
M1=M2=90độ (vì vuông góc), AC=AB( vì tam giác ABC cân) , góc C = góc B( vì tam giác ABC cân)
suy ra tam giác AMB = tam giác AMC(ch-gn)
c) từ b suy ra MB=MC ( 2 cạnh t/ứng )
Xét tam giac IMB và tam giac IMC có
IM chung
M1=M2( vì AM vuông góc BC)
MB=MC ( chứng minh trên)
suy ra tam giác IMB = tam giác IMC (c-g-c)
suy ra góc ICM = góc IBM( 2 góc tương ứng )
suy ra tam giác IBC là tam giác cân tại I
d)( tự làm nhé)
mình cần bạn nào giúp mình làm cấu d
còn những cấu trên biết làm rồi
chứng minh a vuông góc b