Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEHF có
\(\widehat{FAE}=\widehat{HFA}=\widehat{HEA}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: AH=FE
a: Xét ΔAEH vuông tại E và ΔAHB vuông tại H có
góc EAH chung
=> ΔAEH đồng dạng với ΔAHB
b: ΔAHB vuông tại H có HE vuông góc AB
nên AH^2=AE*AB
ΔAHC vuông tại H
mà HF là đường cao
nên AF*AC=AH^2=AE*AB
c: AE*AB=AF*AC
=>AE/AC=AF/AB
=> ΔAEF đồng dạng với ΔACB
d: Xét ΔMEB và ΔMCF có
góc MEB=góc MCF
góc M chung
=> ΔMEB đồng dạng với ΔMCF
=>ME/MC=MB/MF
=>ME*MF=MB*MC
Xét tam giác AEH và tam giác AHB, có:
\(\widehat{AHB}=\widehat{AEH}=90^0\)
\(\widehat{A}:chung\)
Vậy tam giác AEH đồng dạng tam giác AHB ( g.g )
Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
=>EF=AH
Xét tam giác AEH và tam giác AHB có
Góc BAH chung
Góc AEH = góc AHB (=90 độ)
=> tam giác AEH đồng dạng vs tam giác AHB (gg)
=> AE/AH = AH/AB
=> AH^2 = AE.AB
xét ΔAHB và ΔAHE ta có
\(\widehat{A}-chung\)
\(\widehat{AEH}=\widehat{AHB}=90^o\)
->ΔAHB ∼ ΔAHE(g.g)
->\(\dfrac{AH}{AE}=\dfrac{AB}{AH}\)
=>\(AH^2=AE.AB\)