K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2020

Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M ...

Có: \(\left\{{}\begin{matrix}\widehat{ABM}+\widehat{ABC}=180^0\\\widehat{ACN}+\widehat{ACB}=180^0\end{matrix}\right.\) (kề bù)

Mà: \(\widehat{ABC}=\widehat{ACB}\) (ΔABC cân tại A)

=> \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABM và ΔACN ta có:

AB = AC (ΔABC cân tại A)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)

BM = CN (GT)

=> ΔABM = ΔACN (c - g - c)

=> AM = AN (2 cạnh tương ứng)

P/s: Các câu còn lại đâu ?

a: Xét ΔABM và ΔACN có 

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

XétΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{BAH}=\widehat{CAK}\)

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

b: Ta có: ΔABM=ΔACN

nên AM=AN

 

a: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó:ΔABM=ΔACN

b: Xét ΔHMB vuông tại H và ΔKNC vuông tại K có

MB=NC

\(\widehat{M}=\widehat{N}\)

Do đó: ΔHMB=ΔKNC

Suy ra: BH=CK

c: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

BH=CK

Do đó:ΔABH=ΔACK

Suy ra:  AH=AK

Xét ΔAMN có AH/AM=AK/AN

nên HK//MN

hay HK//BC

d: Ta có: ΔHBM=ΔKCN

nên \(\widehat{HBM}=\widehat{KCN}\)

=>\(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

24 tháng 2 2022

Cám ơn nhiều ạ!

28 tháng 1 2022

a) △ABC cân ⇒ \(\widehat{ABC}=\widehat{ACB}\) ⇒\(\widehat{ABM}=\widehat{ACN}\) 

Xét △ABM và △ACN có:

\(AB=AC\) ( Vì △ABC cân)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)

BM=CN(gt)

Do đó : △ABC=△ACN\(\left(c.g.c\right)\)

b)Xét △vuoongAHB và △vuoongAKC có

AB=AC(vì △ABC cân)

\(\widehat{HAB}=\widehat{KAC}\) (vì △ABM=△ACN)

⇒△AHB=△AKC ( cạnh huyền góc nhọn)

⇒AH=AK

 

 

28 tháng 1 2022

a, Ta có : ^ABM = ^MBC - ^ABC (1) 

^ACN = ^NCB - ^ACB (2) 

Từ (1) ; (2) suy ra ^ABM = ^ACN 

Xét tam giác ABM và tam giác ANC có : 

^ABM = ^ANC ( cmt ) 

AB = AC ( gt )

MB = NC (gt)

Vậy tam giác ABM = tam  giác ACN ( c.g.c )

=> AM = AN ( 2 cạnh tương ứng )

Xét tam giác AMN có : AN = AM 

Vậy tam giác AMN là tam giác cân tại A 

=> ^M = ^N (3) 

b, Ta có : ^AMB = ^ABH ( cùng phụ ^HBM ) (4) 

^ACK = ^ANC ( cùng phụ ^KCN ) (5) 

Từ (3) ; (4) ; (5) suy ra : ^ABH = ^ACK 

=> ^HBM = ^KCN 

Xét tam giác AHB và tam giác AKC ta có : 

^ABH = ^ACK ( cmt )

AB = AC 

^AHB = ^AKC = 900

Vậy tam giác AHB = tam giác AKC ( ch - gn )

=> AH = AK ( 2 cạnh tương ứng )

c, Ta có : ^HBM = ^OBC ( đối đỉnh ) 

^KCN = ^BCO ( đối đỉnh ) 

mà ^HBM = ^KCN (cmt) 

Xét tam giác OBC có : 

^OBC = ^OCB vậy tam giác OBC cân tại O

 

a: XétΔABM và ΔACN có

AB=AC
\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra AM=AN

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

b: Xét ΔABM và ΔACN có 

AB=AC
\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó;ΔABM=ΔACN

Suy ra: \(\widehat{M}=\widehat{N}\)

Xét ΔEBM vuông tại E và ΔFCN vuông tại F có

BM=CN

\(\widehat{M}=\widehat{N}\)

Do đó: ΔEBM=ΔFCN

Suy ra: \(\widehat{EBM}=\widehat{FCN}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

=>IB=IC

mà AB=AC

và HB=HC

nên A,H,I thẳng hàng

14 tháng 4 2020

a) ABC cân tại A (gt) => AB=AC và góc ABC = góc ACB

=> góc ABM = góc ACN ( các góc kề bù với góc ABC và góc ACB)

Xét tam giác ABM và tam giác ACN có

AB=AC

 góc ABM= góc ACN (cmt)

BM=CN )gt)

=> tam giác ABM = tam giác ACN ( c.g.c)

=> AM=AN ( 2 cạnh tương ứng)

b) tam giác ABM = tam giác ACN (cmt)

=> góc M= góc N (cặp góc tương ứng)

Xét tam giác HBM và tam giác KCN có

 góc BHM= góc CKN =90 độ (BH vuông góc AM, AN vuông góc CK)

BM =  CN (Gt)

góc M= góc N (cmt)

=> tam giác  HBM = tam giác KCN ( cạnh huyền - góc nhọn)

c) TA có tam giác HBC và tam giác KCN (cmt)

=> góc HBM = góc KCN (hai goc tương ứng)

MÀ góc HBM = góc CBO ( hai góc đối đỉnh )

      góc KCN=góc BCO ( hai góc đối đỉnh )

=> góc CBO= góc BCO

=> tam giác OBC cân  tại O ( dấu hiệu nhận biết tam giác vuông)

14 tháng 4 2020

câu c nhầm là dấu hiệu nhận biết tg cân ms đúng

21 tháng 2 2020

a, tam giác ABC cân tại A (Gt) 

=> góc ABC = góc ACB (tc)

góc ABC + góc ABM = 180

góc ACB + góc ACN = 180

=> góc ABM = góc ACN ( do góc ABC = góc ACB do tam giac ABC cân nhá )

 xét tam giác ABM và tam giác ACN có :

BM = CN (gt)

AB = AC do tam giác ABC cân tại A (gt)

=> tam giác ABM = tam giác ACN (c-g-c)

=> AM = AN (đn)

=> tam giác AMN cân tại A (đn)

b, tam giác AMN cân tại A (câu a)

=> góc AMN = góc ANM (tc)

xét tam giác MBH và tam giác NCK có :

MB = CN (gt)

góc MHB = góc CKN = 90 

=> tam giác MBH = tam giác NCK (ch-gn)

=> BH = CK (đn)

c, tam giác MBH = tam giác NCK (câu b)

=> góc HBM = góc KCN (đn)

góc HBM = góc CBO (đối đỉnh

) góc KCN = góc BCO (đối đỉnh)

=> góc CBO = góc BCO 

=> tam giác BOC cân tại O

21 tháng 2 2020

Bạn Hacker Mũ Trắng 1902 làm đúng lè

hok tốt

21 tháng 4 2020

a) Vì tam giác ABC cân => \(\hept{\begin{cases}AB=AC\\\widehat{ABM}=\widehat{ANC}\end{cases}}\)

mà BM=CN => \(\Delta AMB=\Delta ANC\left(cgc\right)\)=> AM=AN

=> Tam giác AMN cân tại A

b) \(S_{AMB}=S_{ANC}\)=> \(BH\cdot AM=CK\cdot AN\)

<=> BH=CK (vì AM=AN)
c) \(\hept{\begin{cases}\widehat{AHB}=\widehat{AKC}=90^o\\AB=AC\\BH=CK\end{cases}\Rightarrow\Delta AHB=\Delta AKC\left(ch-gv\right)}\)

=> AH=CK