Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(tan2a=tan\left[\left(a+b\right)+\left(a-b\right)\right]=\dfrac{tan\left(a+b\right)+tan\left(a-b\right)}{1-tan\left(a+b\right)tan\left(a-b\right)}\)
\(\Rightarrow\dfrac{tan\left(a+b\right)+tan\left(a-b\right)}{1-tan\left(a+b\right)tan\left(a-b\right)}=\dfrac{5+4}{1-5.4}=-\dfrac{9}{19}\)
Vậy \(tan2a=-\dfrac{9}{19}\)
Vì π/2 < a < π nên tan a < 0, do đó tan a = -2.
Áp dụng công thức
Đáp án là B.
Chọn B.
Theo công thức cộng ta có:
Mà a và b là các góc nhọn suy ra
Vì 3π/4 < a < π nên tan a < 0. Vậy tan a = (-1)/2. Đáp án là D.
\(tana-cota=2\sqrt{3}\Rightarrow\left(tana-cota\right)^2=12\)
\(\Rightarrow\left(tana+cota\right)^2-4=12\Rightarrow\left(tana+cota\right)^2=16\)
\(\Rightarrow P=4\)
\(sinx+cosx=\dfrac{1}{5}\Rightarrow\left(sinx+cosx\right)^2=\dfrac{1}{25}\)
\(\Rightarrow1+2sinx.cosx=\dfrac{1}{25}\Rightarrow sinx.cosx=-\dfrac{12}{25}\)
\(P=\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}=\dfrac{sin^2x+cos^2x}{sinx.cosx}=\dfrac{1}{sinx.cosx}=\dfrac{1}{-\dfrac{12}{25}}=-\dfrac{25}{12}\)
gợi ý tan 10o = cot 80o
mà tan a . cot a =1
phần còn lại tự làm
chưa hiểu thì hỏi nhé
\(tan\left(a+b\right)=7;tan\left(a-b\right)=4\)
\(tan2a=tan\left[\left(a+b\right)+\left(a-b\right)\right]=\dfrac{7+4}{1-7.4}=\dfrac{11}{-27}=-\dfrac{11}{27}\)