Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề phần b, bị sai đó
phài là AB.AI=AC.AP mới đúng
a, bn c/m \(\Delta ABD\)đồng dạng với \(\Delta PBI\)theo th góc -góc
(góc B chung, góc I = góc D =90o)
=> \(\frac{AB}{BD}=\frac{BP}{BI}\Rightarrowđpcm\)
b,tương tự phần a
xét\(\Delta ABC\)và \(\Delta API\)
c, đề sai bn nhé AC.AP chứ ko phải AC. AD
cộng 2 vế của phần a và b ta đc
AC.AP+BD.PD=AB.BI+AB.AI
=AB.(BI+AI)
=AB. AB=AB2(đpcm)
đây là cách làm còn tùy bn trình bày nha
tk mk nha
Đầu tiên, chứng minh rằng a; ab.bi = bp.bdb: Theo định lí tỷ lệ trong tam giác đồng dạng, ta có: a; ab.bi = (ac; ab). (ac; bd) = (ac; ab). (bp; bd) (vì p là giao điểm của ac và bd) = (ac; ab) / (ab; ac). (bp; bd) (vì (ac; bd) = (ab; ac) + (ab; bd)) = (ab; ac) / (ac; ab). (bd; bp) (vì (ab; ac) = (ac; ab) + (ac; bd)) = (ab; ac). (bd; bp) / (ac; ab) = (ab; ac). (bp; bd) / (ac; ab) (vì (bd; bp) = (bp; bd)) = bp.bdb / ac.apc
Tiếp theo, chứng minh rằng ab.ai = ac.apc: Tương tự như trên, ta có: ab.ai = (ab; ac). (ab; bd) = (ac; ab). (bp; bd) (vì p là giao điểm của ac và bd) = (ac; ab) / (ab; ac). (bd; bp) (vì (ac; bd) = (ab; ac) + (ab; bd)) = (ab; ac). (bd; bp) / (ab; ac) = (ab; ac). (bp; bd) / (ab; ac) (vì (bd; bp) = (bp; bd)) = ac.apc
Cuối cùng, chứng minh rằng ab^2 = ac + ap.bp.bd: Ta có: ab^2 = ab.ab = (ab; ac). (ab; bd) (vì (ab; ac) = (ac; ab) + (ab; bd)) = (ab; ac) / (ac; ab). (bd; ab) (vì (ac; bd) = (ab; ac) + (ab; bd)) = (ab; ac). (bd; ab) / (ac; ab) = (ab; ac). (bp; bd) / (ac; ab) (vì (bd; ab) = (bp; bd)) = ac + ap.bp.bd (vì (ab; ac) = ac và (bd; ab) = ap.bp.bd)
6:
ΔABC vuông tại A
=>AB^2+AC^2=BC^2
=>BC^2=18^2+24^2=900
=>BC=30(cm)
ΔABC vuông tại A có AM là trung tuyến
nên AM=BM=CM=BC/2=15cm
Xét ΔCMD vuông tại M và ΔCAB vuông tại A có
góc C chung
Do đó: ΔCMD đồng dạng với ΔCAB
=>CD/CB=CM/CA
=>CD/30=15/18=5/6
=>CD=25cm
ΔCMD đồng dạng với ΔCAB
=>DM/AB=CM/CA
=>DM/24=15/18=5/6
=>DM=20cm
a,Gọi P là chân đường cao hạ từ A xuống BC
Trên nửa mf bờ AF có chứa B vẽ tia Fx//AE .Trên Fx lấy Q (Q là giao của AP và Fx)
Kéo dài AB cắt EQ tại S
Ta có : \(\widehat{SQA}=\widehat{EQA}\) (FQ//AE)
\(\Rightarrow\widehat{SQA}+\widehat{QAS}=\widehat{EAQ}+\widehat{QAS}=90\)
Ta có : \(\widehat{SQA}+\widehat{QAS}+\widehat{ASQ}=180\)
\(\Rightarrow\widehat{ASQ=90^0\widehat{\Rightarrow SFA}+\widehat{FAS}=80^o}\)
Mà : \(\widehat{BAC}+\widehat{FAS}=90^o\)
=> SFA = BAC
Tương tự CM FAQ = ACB (cùng phụ PAC)
Và AF = AC
=> Tam giác AFQ = CAB
FQ = AB = AE
Chứng minh tương tự MAE = MQF (c.g.c)
=> FM = FE
> FB = EC