K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2019

đề phần b, bị sai đó

phài là AB.AI=AC.AP mới đúng 

A B P I C D

a, bn c/m \(\Delta ABD\)đồng dạng với \(\Delta PBI\)theo th góc -góc

(góc B chung, góc I = góc D =90o)

=> \(\frac{AB}{BD}=\frac{BP}{BI}\Rightarrowđpcm\)

b,tương tự phần a

xét\(\Delta ABC\)và  \(\Delta API\)

c, đề sai bn nhé  AC.AP chứ ko phải AC. AD

cộng 2 vế của phần a và b ta đc

AC.AP+BD.PD=AB.BI+AB.AI

                       =AB.(BI+AI)

                       =AB. AB=AB2(đpcm)

đây là cách làm còn tùy bn trình bày nha

tk mk nha

Tham khảo:

loading...

30 tháng 8 2023

Đầu tiên, chứng minh rằng a; ab.bi = bp.bdb: Theo định lí tỷ lệ trong tam giác đồng dạng, ta có: a; ab.bi = (ac; ab). (ac; bd) = (ac; ab). (bp; bd) (vì p là giao điểm của ac và bd) = (ac; ab) / (ab; ac). (bp; bd) (vì (ac; bd) = (ab; ac) + (ab; bd)) = (ab; ac) / (ac; ab). (bd; bp) (vì (ab; ac) = (ac; ab) + (ac; bd)) = (ab; ac). (bd; bp) / (ac; ab) = (ab; ac). (bp; bd) / (ac; ab) (vì (bd; bp) = (bp; bd)) = bp.bdb / ac.apc

Tiếp theo, chứng minh rằng ab.ai = ac.apc: Tương tự như trên, ta có: ab.ai = (ab; ac). (ab; bd) = (ac; ab). (bp; bd) (vì p là giao điểm của ac và bd) = (ac; ab) / (ab; ac). (bd; bp) (vì (ac; bd) = (ab; ac) + (ab; bd)) = (ab; ac). (bd; bp) / (ab; ac) = (ab; ac). (bp; bd) / (ab; ac) (vì (bd; bp) = (bp; bd)) = ac.apc

Cuối cùng, chứng minh rằng ab^2 = ac + ap.bp.bd: Ta có: ab^2 = ab.ab = (ab; ac). (ab; bd) (vì (ab; ac) = (ac; ab) + (ab; bd)) = (ab; ac) / (ac; ab). (bd; ab) (vì (ac; bd) = (ab; ac) + (ab; bd)) = (ab; ac). (bd; ab) / (ac; ab) = (ab; ac). (bp; bd) / (ac; ab) (vì (bd; ab) = (bp; bd)) = ac + ap.bp.bd (vì (ab; ac) = ac và (bd; ab) = ap.bp.bd)

6:

ΔABC vuông tại A

=>AB^2+AC^2=BC^2

=>BC^2=18^2+24^2=900

=>BC=30(cm)

ΔABC vuông tại A có AM là trung tuyến

nên AM=BM=CM=BC/2=15cm

Xét ΔCMD vuông tại M và ΔCAB vuông tại A có

góc C chung

Do đó: ΔCMD đồng dạng với ΔCAB

=>CD/CB=CM/CA

=>CD/30=15/18=5/6

=>CD=25cm

ΔCMD đồng dạng với ΔCAB

=>DM/AB=CM/CA

=>DM/24=15/18=5/6

=>DM=20cm

 

10 tháng 8 2016

 

[​IMG]

a,Gọi P là chân đường cao hạ từ A xuống BC

Trên nửa mf bờ AF có chứa B vẽ tia Fx//AE .Trên Fx lấy Q (Q là giao của AP và Fx)
Kéo dài AB cắt EQ tại S 

Ta có : \(\widehat{SQA}=\widehat{EQA}\) (FQ//AE)

\(\Rightarrow\widehat{SQA}+\widehat{QAS}=\widehat{EAQ}+\widehat{QAS}=90\)

Ta có : \(\widehat{SQA}+\widehat{QAS}+\widehat{ASQ}=180\)

\(\Rightarrow\widehat{ASQ=90^0\widehat{\Rightarrow SFA}+\widehat{FAS}=80^o}\)

Mà : \(\widehat{BAC}+\widehat{FAS}=90^o\)

=> SFA = BAC

Tương tự CM FAQ = ACB (cùng phụ PAC)

Và AF = AC

=> Tam giác AFQ = CAB

FQ = AB = AE

Chứng minh tương tự MAE = MQF (c.g.c)

=> FM = FE

> FB = EC

 

 

 

10 tháng 8 2016

mong các bạn sẽ giúp mình làm bài tập này