K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2019

đề phần b, bị sai đó

phài là AB.AI=AC.AP mới đúng 

A B P I C D

a, bn c/m \(\Delta ABD\)đồng dạng với \(\Delta PBI\)theo th góc -góc

(góc B chung, góc I = góc D =90o)

=> \(\frac{AB}{BD}=\frac{BP}{BI}\Rightarrowđpcm\)

b,tương tự phần a

xét\(\Delta ABC\)và  \(\Delta API\)

c, đề sai bn nhé  AC.AP chứ ko phải AC. AD

cộng 2 vế của phần a và b ta đc

AC.AP+BD.PD=AB.BI+AB.AI

                       =AB.(BI+AI)

                       =AB. AB=AB2(đpcm)

đây là cách làm còn tùy bn trình bày nha

tk mk nha

17 tháng 7 2018

Mình đang cần câu này???

24 tháng 7 2021

Năm sau tui thi THPT quốc gia rồi :v, không biết bạn Hoàng Hà còn cần câu này khum nhỉ?

2 tháng 2 2016

17)\(AH^2=\frac{3b^2}{4};\Delta BCD;AD=b-\frac{a^2}{b}\)

MÀ \(AD^2=AH^2+DH^2=b^2-ab+a^2\)

 

2 tháng 2 2016

con cau 15,18

1) Cho tam giác đều ABC,gọi M là trung điểm của BC.Một góc xMy = 60 độ quay quanh điểm M sao cho 2 cạnh Mx,My luôn cắt cạnh AB và AC lần lượt tại D và E.Chứng minh :a) BD*Ce=BC2/4b)ĐM,EM lần lượt là tia phân giác của các góc BDE và CED.c)Chu vi tam giác ADE không đổi.2)tìm tất cả các tam giác vuông có số đo các cạnh là các số nguyên dương và số đo diện tích bằng số đo chu vi.3)Cho tam giác ABC vuông...
Đọc tiếp

1) Cho tam giác đều ABC,gọi M là trung điểm của BC.Một góc xMy = 60 độ quay quanh điểm M sao cho 2 cạnh Mx,My luôn cắt cạnh AB và AC lần lượt tại D và E.Chứng minh :

a) BD*Ce=BC2/4

b)ĐM,EM lần lượt là tia phân giác của các góc BDE và CED.

c)Chu vi tam giác ADE không đổi.

2)tìm tất cả các tam giác vuông có số đo các cạnh là các số nguyên dương và số đo diện tích bằng số đo chu vi.

3)Cho tam giác ABC vuông tại A(AB<AC),có AH là đường cao. Trong nửa mặt phẳng bờ AH có chứa C vẽ hình vuông AHKE.

a)Chứng minh:C<45 độ

b)Gọi P là giao điểm của AC và KE.chứng minh AB=AP

c)Gọi Q là đỉnh thứ tư của hình bình hành APQB, gọi I là giao điểm của BP và AQ. Chứng minh  ba điểm H,I,E thẳng hàng.

d)Chung minh : HE//QK

4)Cho tam giác DBC nhọn . Kẻ BM vuông CD(M thuộc CD),CA vuông BD (A thuộc BD).gọi I là trung điểm của AB ,qua I kẻ đường thẳng vuông góc với AB và cắt CB tại O;qua M kẻ đường thẳng vuông góc với MO cắt DA tại K . Chứng minh KA*KB=KM​2

0
30 tháng 8 2023

Đầu tiên, chứng minh rằng a; ab.bi = bp.bdb: Theo định lí tỷ lệ trong tam giác đồng dạng, ta có: a; ab.bi = (ac; ab). (ac; bd) = (ac; ab). (bp; bd) (vì p là giao điểm của ac và bd) = (ac; ab) / (ab; ac). (bp; bd) (vì (ac; bd) = (ab; ac) + (ab; bd)) = (ab; ac) / (ac; ab). (bd; bp) (vì (ab; ac) = (ac; ab) + (ac; bd)) = (ab; ac). (bd; bp) / (ac; ab) = (ab; ac). (bp; bd) / (ac; ab) (vì (bd; bp) = (bp; bd)) = bp.bdb / ac.apc

Tiếp theo, chứng minh rằng ab.ai = ac.apc: Tương tự như trên, ta có: ab.ai = (ab; ac). (ab; bd) = (ac; ab). (bp; bd) (vì p là giao điểm của ac và bd) = (ac; ab) / (ab; ac). (bd; bp) (vì (ac; bd) = (ab; ac) + (ab; bd)) = (ab; ac). (bd; bp) / (ab; ac) = (ab; ac). (bp; bd) / (ab; ac) (vì (bd; bp) = (bp; bd)) = ac.apc

Cuối cùng, chứng minh rằng ab^2 = ac + ap.bp.bd: Ta có: ab^2 = ab.ab = (ab; ac). (ab; bd) (vì (ab; ac) = (ac; ab) + (ab; bd)) = (ab; ac) / (ac; ab). (bd; ab) (vì (ac; bd) = (ab; ac) + (ab; bd)) = (ab; ac). (bd; ab) / (ac; ab) = (ab; ac). (bp; bd) / (ac; ab) (vì (bd; ab) = (bp; bd)) = ac + ap.bp.bd (vì (ab; ac) = ac và (bd; ab) = ap.bp.bd)

6:

ΔABC vuông tại A

=>AB^2+AC^2=BC^2

=>BC^2=18^2+24^2=900

=>BC=30(cm)

ΔABC vuông tại A có AM là trung tuyến

nên AM=BM=CM=BC/2=15cm

Xét ΔCMD vuông tại M và ΔCAB vuông tại A có

góc C chung

Do đó: ΔCMD đồng dạng với ΔCAB

=>CD/CB=CM/CA

=>CD/30=15/18=5/6

=>CD=25cm

ΔCMD đồng dạng với ΔCAB

=>DM/AB=CM/CA

=>DM/24=15/18=5/6

=>DM=20cm

 

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0