Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi M là trung điểm AB
Xét △△ vuông ABC (ˆA=90o)(A^=90o). Theo định lí Pytago ta có
AB2+AC2=BC2⟹AC2=BC2−AB2=172−82=225⟹AC=15AB2+AC2=BC2⟹AC2=BC2−AB2=172−82=225⟹AC=15
Xét △ABC△ABC có M là trung điểm AB, E là trung điểm BC \Rightarrow ME là đường trung bình của △ABC△ABC
\Rightarrow ME//AC,ME=12AC=7,5ME//AC,ME=12AC=7,5
Xét △ABD△ABD vuông tại D có DM là trung tuyến thuộc cạnh AB
⟹DM=12AB=4⟹DM=12AB=4
Do △ABD△ABD đều \Rightarrow trung tuyến DM còn là đường cao
⟹MD⊥AB⟹MD//AC⟹MD⊥AB⟹MD//AC
Do DM//AB,EM//AB⟹D,M,EDM//AB,EM//AB⟹D,M,E thẳng hàng
⟹DE=ME−DM=7,5−4=3,5⟹DE=ME−DM=7,5−4=3,5
Vậy DE=3,5 cm
Theo đề bài ta có : \(\Delta DAB\)vuông cân tại D
\(\Rightarrow A_1=45^o\)( bù nhau )
Kéo dài BD cắt AC tại F .
Xét \(\Delta ABF\)có :
AD là đường phân giác đồng thời là đường cao
\(\Rightarrow\Delta ABF\)cân tại A
\(\Rightarrow AF=AB=8cm\)
Áp dụng định lí Py-ta-go ta có :
\(AC^2=BC^2-AB^2\)
\(\Rightarrow AC^2=17^2-8^2\)
\(\Rightarrow AC^2=225\)
\(\Rightarrow AC=\sqrt{225}=15\)
\(\Rightarrow CF=15-8=7cm\)
Xét tam giác BFC Có : \(EB=EC\left(gt\right)\)
\(DE//FC\)
=> DE là đường trung bình của tam giác BCF
\(\Rightarrow DE=\frac{1}{2}CF=3,5cm\)(T/c đường trung bình )
1. Tam giác ABC vuông tại A. Biết AB và BC, dựa vào cộng thức Pythagorean ta tính được AC = 15cm. (AC = √(17² - 8²))
2. Vì tam giác DAB vuông cân tại D. Đường cao DF sẽ chia cạnh AB thành hai phần bằng nhau.
3. F là trung điểm của AB; E là trung điểm của BC
==> EF là đường trung bình của tam giác ABC.
==> EF || AC
mà AC vuông góc với AB
==> EF vuông góc với AB
==> D thuộc EF.
==> EF = ED + DF
4. Vì EF là đường trung bình của tam giác ABC. Theo định lý
EF = 1/2(AC)
EF = 7,5cm
Tam giác DAB vuông cân tại D
DA² + DB² = AB²
2DA² = AB²
DA² = 32
DA² = DF.AB(diện tích tam giác DAB)
DF = DA²:AB
DF = 4
DE = EF - DF
DE = 3,5cm.
Gọi giao điểm của ED và AB là F.
Ta có: \(\Delta\)ABC vuông tại A , trung tuyến AE => AE=BE=CE
Xét \(\Delta\) AED và \(\Delta\)BED có:
AE=BE
DE chung => \(\Delta\)AED=\(\Delta\)BED (c.c.c)
AD=BD
=> ^AED=^BED (2 góc tương ứng) => ED là phân giác của ^AEB.
Mà \(\Delta\)AEB cân tại E (AE=BE) => ED là trung tuyến của \(\Delta\)AEB
Hay DF là trung tuyến của \(\Delta\)DAB. Do \(\Delta\)DAB vuông cân tại D => DF=1/2AB=8/2=4
Lại có: AC2=BC2-AB2=172-82=225 => AC=15 (cm)
E là trung điểm BC, F là trung điểm AB => EF là đường trung bình \(\Delta\)ABC
=> EF=AC/2=15/2=7,5 (cm)
=> DE=EF-DF=7,5-4=3,5 (cm)
Vậy DE=3,5cm.