Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm của ED và AB là F.
Ta có: \(\Delta\)ABC vuông tại A , trung tuyến AE => AE=BE=CE
Xét \(\Delta\) AED và \(\Delta\)BED có:
AE=BE
DE chung => \(\Delta\)AED=\(\Delta\)BED (c.c.c)
AD=BD
=> ^AED=^BED (2 góc tương ứng) => ED là phân giác của ^AEB.
Mà \(\Delta\)AEB cân tại E (AE=BE) => ED là trung tuyến của \(\Delta\)AEB
Hay DF là trung tuyến của \(\Delta\)DAB. Do \(\Delta\)DAB vuông cân tại D => DF=1/2AB=8/2=4
Lại có: AC2=BC2-AB2=172-82=225 => AC=15 (cm)
E là trung điểm BC, F là trung điểm AB => EF là đường trung bình \(\Delta\)ABC
=> EF=AC/2=15/2=7,5 (cm)
=> DE=EF-DF=7,5-4=3,5 (cm)
Vậy DE=3,5cm.
Gọi M là trung điểm AB
Xét △△ vuông ABC (ˆA=90o)(A^=90o). Theo định lí Pytago ta có
AB2+AC2=BC2⟹AC2=BC2−AB2=172−82=225⟹AC=15AB2+AC2=BC2⟹AC2=BC2−AB2=172−82=225⟹AC=15
Xét △ABC△ABC có M là trung điểm AB, E là trung điểm BC \Rightarrow ME là đường trung bình của △ABC△ABC
\Rightarrow ME//AC,ME=12AC=7,5ME//AC,ME=12AC=7,5
Xét △ABD△ABD vuông tại D có DM là trung tuyến thuộc cạnh AB
⟹DM=12AB=4⟹DM=12AB=4
Do △ABD△ABD đều \Rightarrow trung tuyến DM còn là đường cao
⟹MD⊥AB⟹MD//AC⟹MD⊥AB⟹MD//AC
Do DM//AB,EM//AB⟹D,M,EDM//AB,EM//AB⟹D,M,E thẳng hàng
⟹DE=ME−DM=7,5−4=3,5⟹DE=ME−DM=7,5−4=3,5
Vậy DE=3,5 cm
Theo đề bài ta có : \(\Delta DAB\)vuông cân tại D
\(\Rightarrow A_1=45^o\)( bù nhau )
Kéo dài BD cắt AC tại F .
Xét \(\Delta ABF\)có :
AD là đường phân giác đồng thời là đường cao
\(\Rightarrow\Delta ABF\)cân tại A
\(\Rightarrow AF=AB=8cm\)
Áp dụng định lí Py-ta-go ta có :
\(AC^2=BC^2-AB^2\)
\(\Rightarrow AC^2=17^2-8^2\)
\(\Rightarrow AC^2=225\)
\(\Rightarrow AC=\sqrt{225}=15\)
\(\Rightarrow CF=15-8=7cm\)
Xét tam giác BFC Có : \(EB=EC\left(gt\right)\)
\(DE//FC\)
=> DE là đường trung bình của tam giác BCF
\(\Rightarrow DE=\frac{1}{2}CF=3,5cm\)(T/c đường trung bình )
1. Tam giác ABC vuông tại A. Biết AB và BC, dựa vào cộng thức Pythagorean ta tính được AC = 15cm. (AC = √(17² - 8²))
2. Vì tam giác DAB vuông cân tại D. Đường cao DF sẽ chia cạnh AB thành hai phần bằng nhau.
3. F là trung điểm của AB; E là trung điểm của BC
==> EF là đường trung bình của tam giác ABC.
==> EF || AC
mà AC vuông góc với AB
==> EF vuông góc với AB
==> D thuộc EF.
==> EF = ED + DF
4. Vì EF là đường trung bình của tam giác ABC. Theo định lý
EF = 1/2(AC)
EF = 7,5cm
Tam giác DAB vuông cân tại D
DA² + DB² = AB²
2DA² = AB²
DA² = 32
DA² = DF.AB(diện tích tam giác DAB)
DF = DA²:AB
DF = 4
DE = EF - DF
DE = 3,5cm.