K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2015

phần a điểm "S" ở đâu ra đấy

b,xét tứ giác ADCB có:

góc BAC =900, góc BDC=900

=>góc BAC= góc BDC

=>tứ giác ADCB nt

=>góc TAD = góc TCB

xét 2 tam giác TAD và TCB có :

góc ATD chung; góc TAD = góc TCB

=>2 tam giác này đồng dạng vs nhau

=>TA/TC=TD/TB

=>TA/TD=TC/TB(t/c tỉ lệ thức)

16 tháng 8 2021

( mấy cái cơ bản thì tự viết nhé )

a) góc MAO và góc MBO= 90 độ

xét tứ giác MAOB có góc MAO+MBO=180 độ

=> MAOB nội tiếp

b) Xét (O) có EB là tiếp tuyến của (O)

\(\Rightarrow\widehat{EBD}=\widehat{EAB}\left(=\frac{1}{2}sđ\widebat{DB}\right)\)

Xét tam giác EDB và tam giác EBA có:

\(\hept{\begin{cases}\widehat{AEB}chung\\\widehat{EBD}=\widehat{EAB}\left(cmt\right)\end{cases}\Rightarrow\Delta EDB~\Delta EBA\left(g-g\right)}\)

\(\Rightarrow\frac{BE}{DE}=\frac{AE}{BE}\)

\(\Rightarrow BE^2=AE.DE\left(1\right)\)

Vì \(AC//MB\Rightarrow\widehat{ACM}=\widehat{DME}\left(SLT\right)\)

Ta có: \(\hept{\begin{cases}\widehat{ACM}=\widehat{ABD}\left(=\frac{1}{2}sđo\widebat{AD}\right)\\\widehat{ABD}=\widehat{MAD}\left(=\frac{1}{2}sđo\widebat{AD}\right)\end{cases}\Rightarrow\widehat{ACM}=\widehat{MAD}}\)

\(\Rightarrow\widehat{DME}=\widehat{MAD}\)

Xét tam giác EMD và tam giác EAM có: 

\(\hept{\begin{cases}\widehat{DME}=\widehat{MAD}\\\widehat{AME}chung\end{cases}}\Rightarrow\Delta EMD~\Delta EAM\left(g-g\right)\)

\(\Rightarrow\frac{ME}{DE}=\frac{AE}{ME}\)

\(\Rightarrow ME^2=DE.AE\left(2\right)\)

Từ (1) và (2) \(\Rightarrow BE=ME\left(đpcm\right)\)

c)  mai nốt :V

16 tháng 8 2021

c) El à trung điểm MB;H là trung điểm AB

-> EH là đường trung bình tam giác MAB

=> EH// MA

=> góc EHB= góc MAB ( đồng vị )

Mà góc MAB = góc AKB ( = 1/2 số đo cung AB )

=> góc EHB= góc AKB

mà góc EHB+ góc IHB = 180 độ

=> góc AKB + góc IHB = 180 độ

=> BHIK nội tiếp

=> góc BHK= BIK  mà góc BHK= 90 độ

=> góc BIK= 90 độ

=> AK vuông góc với BI 

15 tháng 4 2018

a) B,A,C,D nằm trên (O) => tg ABDC nt

góc NAB=90( góc nt chắn nửa (O))=> NA là đường cao tam giác BMN

Cmtt MD là đường cao tam giác BMN=> góc AMC=DNC ( cùng phụ góc ABD)

b) MD cắt AN tại C => C là trực tâm tam giác BMN => BC vuông góc MN tại H

c)Phần này mình nghĩ bạn làm được: Cm các tg DCHN,MHCA nt; sau đó cm tam giác MHC đồng dạng MDN, tam giác NHC đồng dạng tam giác NAM=> MC.MD=MH.MN;NC.NA=NH.MN

=> NC.NA+MC.MD=MH.MN+NH.MN=MN^2

29 tháng 5 2018

A B O C D M N H K E

a) Xét \(\Delta\)NKD và \(\Delta\)MKC: ^NKD = ^MKC (Đối đỉnh); ^DNK = ^CMK (Cùng chắn cung CD)

=> \(\Delta\)NKD ~ \(\Delta\)MKC (g.g) (đpcm).

b) Ta thấy: N là điểm chính giữa của cung AD => \(\Delta\)AND cân tại N => ^NAD = ^NDA

Tứ giác CAND nội tiếp đường tròn (O) => ^NAD = ^NCD; ^NDA = ^NCA.

Mà ^NAD=^NDA (cmt) => ^NCD = ^NCA => CN là phân giác ^ACD.

Tương tự ta chứng minh được: DM là phân giác ^ADC

Do DM giao CN tại K nên K là tâm đường tròn nội tiếp \(\Delta\)CAD => AK là phân giác ^CAD

Hay AE là phân giác ^CAD => ^CAE = ^DAE.

Xét tứ giác ACED nội tiếp (O) => ^CAE = ^CDE; ^DAE = ^DCE

=> ^CDE = ^DCE => \(\Delta\)DEC cân tại E => EC=ED. Mà CD là dây cung của (O)

=> OE vuông góc CD (đpcm).

c) Ta thấy ^CKM là góc ngoài của \(\Delta\)CKD => ^CKM = ^KCD + ^KDC = 1/2 (^ACD + ^ADC) (1)

Ta có: ^MCK = ^ACM + ^ACK. Mà ^ACM = ^ADM (Cùng chắn cung AM) => ^MCK = ^ADM + ^ACK

=> ^MCK = 1/2(^ADC + ^ACD) (2)

Từ (1) và (2) => ^CKM = ^MCK => \(\Delta\)CMK cân tại M => MC=MK=MA

=> M nằm trên trung trực của AK

Lập luận tương tự: NA=NK => N nằm trên trung trực của AK

=>  MN là đường trung trực của AK . Lại có H thuộc MN

=> ^NKH = ^NAH. Mà ^NAH = ^NMC (=^NAC) nên ^NKH = ^NMC.

Xét \(\Delta\)NHK và \(\Delta\)NCM: ^NKH = ^NMC; ^MNC chung => \(\Delta\)NHK ~ \(\Delta\)NCM (g.g)

\(\Delta\)AHK cân tại H => ^HAK = ^HKA. Do AK là phân giác ^CAD => ^HAK = ^KAD

=> ^HKA = ^KAD. Vì 2 góc này so le trg nên HK // AD (đpcm).

d) Nhận xét: \(\Delta\)AMK có AM=KM (cmt)

=> \(\Delta\)AMK là tam giác đều khi ^AMK=600 hay ^AMD=600

Mà ^AMD = ^ACD (Cùng chắn cung AD) => Để \(\Delta\)AMK đều khi ^ACD=600 

Vậy 2 điểm C và D di động trên đường tròn (O) sao cho ^ACD=600 thì \(\Delta\)AMK là tam giác đều.

a: Xét (O) có

AM là tiếp tuyến

AN là tiếp tuyến

Do đó: AM=AN

hay A nằm trên đường trung trực của MN(1)

Ta có: OM=ON

nên O nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra AO là đường trung trực của MN

hay AO⊥MN(3)

b: Xét (O) có 

ΔMNC nội tiếp

MC là đường kính

Do đó: ΔMNC vuông tại N

=>MN⊥NC(4)

Từ (3) và (4) suy ra OA//CN

c: Xét (O) có 

ΔMDC nội tiếp

MC là đường kính

Do đó:ΔMDC vuông tại D

Xét ΔMAC vuông tại M có MD là đường cao

nên \(AD\cdot AC=AM^2\left(5\right)\)

Xét ΔMOA vuông tại M có MH là đường cao

nên \(AH\cdot AO=AM^2\left(6\right)\)

Từ (5) và (6)suy ra \(AD\cdot AC=AH\cdot AO\)

7 tháng 1 2022

mình cần ý d cơ ạ

 Bài 1: Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B,C là hai tiếp điểm). Kẻ cát tuyến ADE vs đường tròn (O) (D nằm giữa A và E).a) cm: A,B,O,C cùng thuộc một đường tròn.b) cm: OA vuông BC tại H và OD2 = OH.OA. Từ đó suy ra tam giác OHD đồng dạng vs tam giác ODA.c) cm: BC trùng với tia phân giác của góc DHE.d) Từ D kẻ đường thẳng song song với BE, đường...
Đọc tiếp

 Bài 1: Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B,C là hai tiếp điểm). Kẻ cát tuyến ADE vs đường tròn (O) (D nằm giữa A và E).

a) cm: A,B,O,C cùng thuộc một đường tròn.

b) cm: OA vuông BC tại H và OD= OH.OA. Từ đó suy ra tam giác OHD đồng dạng vs tam giác ODA.

c) cm: BC trùng với tia phân giác của góc DHE.

d) Từ D kẻ đường thẳng song song với BE, đường thẳng này cắt AB, AC lần lượt tại M và N. cm: D là trung điểm MN.

Bài 2: Cho đường tròn tâm O bán kính R, dây BC khác đường kính. Hai tiếp tuyến của đường tròn (O,R) tại B và tại C cắt nhau tại A. Kẻ đường kính CD, kẻ BH vuông góc vs CD tại H.

a) cm: A,B,O,C cùng thuoojcj một đường tròn. Xác định tâm và bán kính của đường tròn đó.

b) cm: AO vuông góc vs BC. Cho biết R=15cm, BC=24cm. Tính AB, OA.

c) cm: BC là tia phân giác của góc ABH.

d) Gọi I là giao điểm của AD và BH, E là giao điểm của BD và AC. cm: IH=IB.

0