Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phần a điểm "S" ở đâu ra đấy
b,xét tứ giác ADCB có:
góc BAC =900, góc BDC=900
=>góc BAC= góc BDC
=>tứ giác ADCB nt
=>góc TAD = góc TCB
xét 2 tam giác TAD và TCB có :
góc ATD chung; góc TAD = góc TCB
=>2 tam giác này đồng dạng vs nhau
=>TA/TC=TD/TB
=>TA/TD=TC/TB(t/c tỉ lệ thức)
( mấy cái cơ bản thì tự viết nhé )
a) góc MAO và góc MBO= 90 độ
xét tứ giác MAOB có góc MAO+MBO=180 độ
=> MAOB nội tiếp
b) Xét (O) có EB là tiếp tuyến của (O)
\(\Rightarrow\widehat{EBD}=\widehat{EAB}\left(=\frac{1}{2}sđ\widebat{DB}\right)\)
Xét tam giác EDB và tam giác EBA có:
\(\hept{\begin{cases}\widehat{AEB}chung\\\widehat{EBD}=\widehat{EAB}\left(cmt\right)\end{cases}\Rightarrow\Delta EDB~\Delta EBA\left(g-g\right)}\)
\(\Rightarrow\frac{BE}{DE}=\frac{AE}{BE}\)
\(\Rightarrow BE^2=AE.DE\left(1\right)\)
Vì \(AC//MB\Rightarrow\widehat{ACM}=\widehat{DME}\left(SLT\right)\)
Ta có: \(\hept{\begin{cases}\widehat{ACM}=\widehat{ABD}\left(=\frac{1}{2}sđo\widebat{AD}\right)\\\widehat{ABD}=\widehat{MAD}\left(=\frac{1}{2}sđo\widebat{AD}\right)\end{cases}\Rightarrow\widehat{ACM}=\widehat{MAD}}\)
\(\Rightarrow\widehat{DME}=\widehat{MAD}\)
Xét tam giác EMD và tam giác EAM có:
\(\hept{\begin{cases}\widehat{DME}=\widehat{MAD}\\\widehat{AME}chung\end{cases}}\Rightarrow\Delta EMD~\Delta EAM\left(g-g\right)\)
\(\Rightarrow\frac{ME}{DE}=\frac{AE}{ME}\)
\(\Rightarrow ME^2=DE.AE\left(2\right)\)
Từ (1) và (2) \(\Rightarrow BE=ME\left(đpcm\right)\)
c) mai nốt :V
c) El à trung điểm MB;H là trung điểm AB
-> EH là đường trung bình tam giác MAB
=> EH// MA
=> góc EHB= góc MAB ( đồng vị )
Mà góc MAB = góc AKB ( = 1/2 số đo cung AB )
=> góc EHB= góc AKB
mà góc EHB+ góc IHB = 180 độ
=> góc AKB + góc IHB = 180 độ
=> BHIK nội tiếp
=> góc BHK= BIK mà góc BHK= 90 độ
=> góc BIK= 90 độ
=> AK vuông góc với BI
a) B,A,C,D nằm trên (O) => tg ABDC nt
góc NAB=90( góc nt chắn nửa (O))=> NA là đường cao tam giác BMN
Cmtt MD là đường cao tam giác BMN=> góc AMC=DNC ( cùng phụ góc ABD)
b) MD cắt AN tại C => C là trực tâm tam giác BMN => BC vuông góc MN tại H
c)Phần này mình nghĩ bạn làm được: Cm các tg DCHN,MHCA nt; sau đó cm tam giác MHC đồng dạng MDN, tam giác NHC đồng dạng tam giác NAM=> MC.MD=MH.MN;NC.NA=NH.MN
=> NC.NA+MC.MD=MH.MN+NH.MN=MN^2
a) Xét \(\Delta\)NKD và \(\Delta\)MKC: ^NKD = ^MKC (Đối đỉnh); ^DNK = ^CMK (Cùng chắn cung CD)
=> \(\Delta\)NKD ~ \(\Delta\)MKC (g.g) (đpcm).
b) Ta thấy: N là điểm chính giữa của cung AD => \(\Delta\)AND cân tại N => ^NAD = ^NDA
Tứ giác CAND nội tiếp đường tròn (O) => ^NAD = ^NCD; ^NDA = ^NCA.
Mà ^NAD=^NDA (cmt) => ^NCD = ^NCA => CN là phân giác ^ACD.
Tương tự ta chứng minh được: DM là phân giác ^ADC
Do DM giao CN tại K nên K là tâm đường tròn nội tiếp \(\Delta\)CAD => AK là phân giác ^CAD
Hay AE là phân giác ^CAD => ^CAE = ^DAE.
Xét tứ giác ACED nội tiếp (O) => ^CAE = ^CDE; ^DAE = ^DCE
=> ^CDE = ^DCE => \(\Delta\)DEC cân tại E => EC=ED. Mà CD là dây cung của (O)
=> OE vuông góc CD (đpcm).
c) Ta thấy ^CKM là góc ngoài của \(\Delta\)CKD => ^CKM = ^KCD + ^KDC = 1/2 (^ACD + ^ADC) (1)
Ta có: ^MCK = ^ACM + ^ACK. Mà ^ACM = ^ADM (Cùng chắn cung AM) => ^MCK = ^ADM + ^ACK
=> ^MCK = 1/2(^ADC + ^ACD) (2)
Từ (1) và (2) => ^CKM = ^MCK => \(\Delta\)CMK cân tại M => MC=MK=MA
=> M nằm trên trung trực của AK
Lập luận tương tự: NA=NK => N nằm trên trung trực của AK
=> MN là đường trung trực của AK . Lại có H thuộc MN
=> ^NKH = ^NAH. Mà ^NAH = ^NMC (=^NAC) nên ^NKH = ^NMC.
Xét \(\Delta\)NHK và \(\Delta\)NCM: ^NKH = ^NMC; ^MNC chung => \(\Delta\)NHK ~ \(\Delta\)NCM (g.g)
\(\Delta\)AHK cân tại H => ^HAK = ^HKA. Do AK là phân giác ^CAD => ^HAK = ^KAD
=> ^HKA = ^KAD. Vì 2 góc này so le trg nên HK // AD (đpcm).
d) Nhận xét: \(\Delta\)AMK có AM=KM (cmt)
=> \(\Delta\)AMK là tam giác đều khi ^AMK=600 hay ^AMD=600
Mà ^AMD = ^ACD (Cùng chắn cung AD) => Để \(\Delta\)AMK đều khi ^ACD=600
Vậy 2 điểm C và D di động trên đường tròn (O) sao cho ^ACD=600 thì \(\Delta\)AMK là tam giác đều.
a: Xét (O) có
AM là tiếp tuyến
AN là tiếp tuyến
Do đó: AM=AN
hay A nằm trên đường trung trực của MN(1)
Ta có: OM=ON
nên O nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra AO là đường trung trực của MN
hay AO⊥MN(3)
b: Xét (O) có
ΔMNC nội tiếp
MC là đường kính
Do đó: ΔMNC vuông tại N
=>MN⊥NC(4)
Từ (3) và (4) suy ra OA//CN
c: Xét (O) có
ΔMDC nội tiếp
MC là đường kính
Do đó:ΔMDC vuông tại D
Xét ΔMAC vuông tại M có MD là đường cao
nên \(AD\cdot AC=AM^2\left(5\right)\)
Xét ΔMOA vuông tại M có MH là đường cao
nên \(AH\cdot AO=AM^2\left(6\right)\)
Từ (5) và (6)suy ra \(AD\cdot AC=AH\cdot AO\)