K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2021

a) Xét tam giác OBC cân tại O có: 

OA là trung tuyến (A là trung điểm BC) 

=> OA là đường cao (TC các đường trong tam giác cân)

=> OA vuông góc BC (đpcm)

b) Xét tam giác OBC cân tại O có: 

OA là trung tuyến (A là trung điểm BC) 

=> OA là đường phân giác ^A (TC các đường trong tam giác cân)

Xét tam giác OMN có: OM = ON (gt)

=> Tam giác OMN cân tại O

Mà OA là đường phân giác ^A (cmt)

=> OA là đường cao (TC các đường trong tam giác cân)

=> OA vuông góc MN

Mà OA vuông góc BC (cmt)

=> MN // BC (Từ vuông góc đến //)

 

 

 

 

a: Xét ΔOAD và ΔOCB có

OA=OC

\(\widehat{AOD}\) chung

OD=OB

Do đó: ΔOAD=ΔOCB

b: Xét ΔOBD có \(\dfrac{OA}{OB}=\dfrac{OC}{OD}\)

nên AC//BD

c: Ta có: ΔOAD=ΔOCB

=>\(\widehat{OAD}=\widehat{OCB};\widehat{ODA}=\widehat{OBC}\)

Ta có: \(\widehat{OAD}+\widehat{DAB}=180^0\)(hai góc kề bù)

\(\widehat{OCB}+\widehat{DCB}=180^0\)(hai góc kề bù)

mà \(\widehat{OAD}=\widehat{OCB}\)

nên \(\widehat{DAB}=\widehat{DCB}\)

Ta có: OA+AB=OB

OC+CD=OD

mà OA=OC và OB=OD

nên AB=CD

Xét ΔMAB và ΔMCD có

\(\widehat{MAB}=\widehat{MCD}\)

AB=CD

\(\widehat{MBA}=\widehat{MDC}\)

Do đó: ΔMAB=ΔMCD

=>MB=MD

Xét ΔOMB và ΔOMD có

OM chung

MB=MD

OB=OD

Do đó: ΔOMB=ΔOMD

=>\(\widehat{BOM}=\widehat{DOM}\)

=>\(\widehat{xOM}=\widehat{yOM}\)

=>OM là phân giác của góc xOy

d: Ta có: OB=OD

=>O nằm trên đường trung trực của BD(1)

Ta có: MB=MD

=>M nằm trên đường trung trực của BD(2)

Ta có: NB=ND

=>N nằm trên đường trung trực của BD(3)

Từ (1),(2),(3) suy ra O,M,N thẳng hàng

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:a) Góc OAB = góc OCAb) Tam giác AOM = tam giác CONc) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MONBài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C...
Đọc tiếp

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:
a) Góc OAB = góc OCA
b) Tam giác AOM = tam giác CON
c) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MON
Bài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C nằm giữa O, D) sao cho OA=OC và OB=OD. Chứng minh:
a) Tam giác AOD = tam giác COB
b) Tam giác ABD = tam giác CDB
c) Gọi I là giao điểm của AD và BC. Chứng minh IA=IC; IB=ID
Bài 3: Cho tam giác ABC. Qua A kẻ đường thẳng song song với BC, qua C kẻ đường thẳng song song với AB, hai đường thẳng này cắt nhau tại D
a) Chứng minh: AD=BC và AB=DC
b) Gọi M, N lần lượt là trung điểm của BC và AD. Chứng minh: AM=CN
c) Gọi O là giao điểm của AC và BD. Chứng minh: OA=OC và OB=OD
d) Chứng minh: M, O, N thẳng hàng
Bài 4: Cho góc xOy = 60 độ. Vẽ Oz là tia phân giác của góc xOy 
a) Tính góc xOy?
b) Trên Ox lấy điểm A và trên Oy lấy điểm B sao cho OA=OB. Tia Oz cắt AB tại I. Chứng minh tam giác OIA = tam giác OIB
c) Chứng minh OI vuông góc AB
d) Trên tia Oz lấy điểm M. Chứng minh MA=MB
e) Qua M vẽ đường thẳng song song với AB cắt tia Ox, Oy lần lượt tại C và D. Chứng minh BD=AC

       Mọi ng giúp mình giải bài này nhé! Cảm ơn mn <3

7
31 tháng 5 2018

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá

31 tháng 5 2018

3/ (Bạn tự vẽ hình giùm)

a/ \(\Delta ABC\)và \(\Delta ADC\)có:

\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)

Cạnh AC chung

\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)

=> \(\Delta ABC\)\(\Delta ADC\)(g. c. g)

=> AD = BC (hai cạnh tương ứng)

và AB = DC (hai cạnh tương ứng)

b/ Ta có AD = BC (cm câu a)

và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)

và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)

=> AN = MC

Chứng minh tương tự, ta cũng có: BM = ND

\(\Delta AMB\)và \(\Delta CND\)có:

BM = ND (cmt)

\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)

AB = CD (\(\Delta ABC\)\(\Delta ADC\))

=> \(\Delta AMB\)\(\Delta CND\)(c. g. c)

=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)

và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)\(\Delta ADC\))

=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)

=> \(\widehat{MAC}=\widehat{ACN}\)(1)

Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)

và AN = MC (cmt) (3)

=> \(\Delta MAC=\Delta NAC\)(g, c. g)

=> AM = CN (hai cạnh tương ứng) (đpcm)

c/ \(\Delta AOB\)và \(\Delta COD\)có:

\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)

AB = CD (cm câu a)

\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)

=> \(\Delta AOB\)\(\Delta COD\)(g. c. g)

=> OA = OC (hai cạnh tương ứng)

và OB = OD (hai cạnh tương ứng)

d/ \(\Delta ONA\)và \(\Delta MOC\)có:

\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)

OA = OC (O là trung điểm AC)

\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)

=> \(\Delta ONA\)\(\Delta MOC\)(g. c. g)

=> ON = OM (hai cạnh tương ứng)

=> O là trung điểm MN

=> M, O, N thẳng hàng (đpcm)

a: Xét tứ giác ABMC có

O là trung điêm chung của AM và BC

góc BAC=90 độ

=>ABMC là hình chữ nhật

=>AB=MC và MC//AB

b: ΔACB vuông tại A

mà AO là trung tuyến

nên OA=OB=OC

c: Xet ΔABC vuông tại A có AH là đường cao

nên 1/AH^2=1/AB^2+1/AC^2

24 tháng 3 2022

Hình bạn tự vẽ

a, Nối M với N

Xét △BMN có:

BM=BN(gt)

=>△BMN cân tại B

=>∠BMN=(180- ∠B) / 2 (1)

Mà ∠BAC=(180- ∠B) / 2 (△ABC cân tại B) (2)

Từ (1) và (2) => ∠BMN=∠BAC (3)

Mà ∠BMN đồng vị ∠BAC (4)

Từ (3) và (4) => MN//AC

b, Xét △CMB và △ANB có

\(\left\{{}\begin{matrix}\text{AB = AC (△ABC cân tại B)}\\\text{∠ABC chung}\\\text{BM=BN}\left(gt\right)\end{matrix}\right.\)

=>△CMB = △ANB (c.g.c)

=> ∠BMC = ∠BNC

=>∠BMN + ∠CMN = ∠BNM + ∠MNA

Mà ∠BMN = ∠BNM (△BMN cân tại B)

=>∠BMN + ∠CMN = ∠BMN + ∠MNA

=> ∠CMN = ∠MNA

=> △IMN cân tại I

=> MI=NI (5)

Mà BM = BN (6)

Từ (5) và (6) => BI là đường trung trực của MN

=> BI ⊥ MN

Có gì không hiểu bạn cứ hỏi mình haha

 

 

a: Xét ΔABM vuông tại M và ΔACM vuông tại M có

AB=AC

AM chung

Do đó: ΔABM=ΔACM

b: Xét ΔABE và ΔACD có

AB=AC

\(\widehat{BAE}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

c: Ta có: AD+DB=AB

AE+EC=AC

mà AD=AE và AB=AC

nên DB=EC

Xét ΔDBC và ΔECB có

DB=EC

\(\widehat{DBC}=\widehat{ECB}\)

BC chung

Do đó: ΔDBC=ΔECB

=>\(\widehat{DCB}=\widehat{EBC}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

Xét ΔAIB và ΔAIC có

AI chung

IB=IC

AB=AC

Do đó: ΔAIB=ΔAIC

=>\(\widehat{BAI}=\widehat{CAI}\)

=>AI là phân giác của góc BAC

7 tháng 1

chưa hiểu phần song song

 

28 tháng 2 2019

giúp mik ik ạk