K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2020

A B C I M N

a, xét tam giác  ABC cân tại A  (gt)

AI _|_ BC (gt)

=> AI đồng thời là đường trung tuyến của tam giác ABC (đl)

=> I là trung điểm của BC (đn)

b, tam giác ABC vuông cân tại A (gt)

=> góc ABC = 45 (đl)

xét tam giác AIB vuông tại I 

=> tam giác AIB vuông cân

AIC tương tự

c,  AM + MB = AB 

AN + NC = AC

AM = NC (gt)

AB = AC do tam giác ABC cân (gt)

=> MB = AN       (1) 

BI = IC do I là trung điểm của BC (câu a)

IC = AI do tam giác IAC cân (câu b)

=> BI = AI    (2)

xét tam giác MBI và tam giác NAI có góc MBI = NAI = 45     (3)

(1)(2)(3) => tam giác MI = tam giác NAI (c-g-c)

d, góc AIB = 90 => góc BIM + góc MIA = 90 

 tam giác MI = tam giác NAI => góc BIM = góc AIN (đn)

=> góc AIN + góc MIA = 90 

=>  góc MIN = 90 

 tam giác MI = tam giác NAI => NI = IM (đn) 

=> tam giác MIN vuông cân tại I (dh)

a: Xét ΔABM vuông tại M và ΔACM vuông tại M có

AB=AC

AM chung

Do đó: ΔABM=ΔACM

b: Xét ΔABE và ΔACD có

AB=AC

\(\widehat{BAE}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

c: Ta có: AD+DB=AB

AE+EC=AC

mà AD=AE và AB=AC

nên DB=EC

Xét ΔDBC và ΔECB có

DB=EC

\(\widehat{DBC}=\widehat{ECB}\)

BC chung

Do đó: ΔDBC=ΔECB

=>\(\widehat{DCB}=\widehat{EBC}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

Xét ΔAIB và ΔAIC có

AI chung

IB=IC

AB=AC

Do đó: ΔAIB=ΔAIC

=>\(\widehat{BAI}=\widehat{CAI}\)

=>AI là phân giác của góc BAC

7 tháng 1 2024

chưa hiểu phần song song

 

2 tháng 2 2019

a, tu ve hinh :

tamgiac ABC can tai A => AB = AC va goc ABC = goc ACB (gn)

goc AIC = goc AIB = 90 do AI | BC (gt)

=> tamgiac AIC = tamgiac AIB (ch - gn)

=> IB = IC (dn)

b, dung PY-TA-GO

c, AE = AF (gt) => tamgiac AFE can tai E (dn)

=> goc AFE = (180 - goc BAC) : 2 (tc)

tamgiac ABC can tai A (gt) => goc ACB = (180 - goc BAC) : 2 (tc)

=> goc AFE = goc ACB ma 2 goc nay dong vi 

=> EF // BC (dh)

vay_

2 tháng 2 2019

                           Giải

Bạn tự vẽ hình

\(\Delta ABC\) cân tại A \(\Rightarrow AB=AC\) và \(\widehat{ABC}=\widehat{ACB}\)

 \(\widehat{AIC}=\widehat{AIB}=90^0\)do \(AI\perp BC\) 

=> Tamgiac AIC = tamgiac AIB 

=> IB = IC (dn)

b, Dùng PY-TA-GO

c, AE = AF (gt) => tamgiac AFE can tai E 

=> Goc AFE = (180 - goc BAC) : 2 

Tamgiac ABC can tai A (gt) => goc ACB = (180 - goc BAC) : 2 

=> Goc AFE = goc ACB ma 2 goc nay dong vi 

=> EF // BC 

Vậy ... ( đpcm )

7 tháng 3 2020

Em tham khảo:

3 tháng 1 2022

lỗi 

28 tháng 7 2021

a) Xét tg ABI và ACI có :

AB=AC( ABC cân tại A)

AI-chung

\(\widehat{AIB}=\widehat{AIC}=90^o\)

=> Tg ABI=AIC (ch-gn)

=> IB=IC

b) Có : \(IB=IC=\frac{BC}{2}=\frac{12}{2}=6cm\)

Xét tg ABI vuông tại I có :

AB2=AI2+IB2

=>102=AI2+62

=>AI=8cm

c) Có :\(\widehat{ABC}+\widehat{HIB}=90^o\)

\(\widehat{ACB}+\widehat{KIC}=90^o\)

\(\widehat{ABC}=\widehat{ACB}\)(ABC cân A)

\(\Rightarrow\widehat{HIB}=\widehat{KIC}\)

Lại có :\(\widehat{IHB}=\widehat{IKC}=90^o\)

IB=IC(cmt)

=> Tg IHB=IKC(ch-gn)

d) Có : MN//BC

\(\Rightarrow\widehat{MIB}=\widehat{IMN}\left(SLT\right)\)

và \(\widehat{KIC}=\widehat{INM}\left(SLT\right)\)

Mà :\(\widehat{HIB}=\widehat{KIC}\left(cmt\right)\)

\(\Rightarrow\widehat{IMN}=\widehat{INM}\)

=> Tg IMN cân tại I

Ý còn lại tự CM

#H

18 tháng 2 2017

TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ

\(AB^2+BC^2=AC^2\)

=>\(8^2+15^2=289=>AC^{ }=17\)

=>AC=17 CM

A B C E

24 tháng 3 2022

Hình bạn tự vẽ

a, Nối M với N

Xét △BMN có:

BM=BN(gt)

=>△BMN cân tại B

=>∠BMN=(180- ∠B) / 2 (1)

Mà ∠BAC=(180- ∠B) / 2 (△ABC cân tại B) (2)

Từ (1) và (2) => ∠BMN=∠BAC (3)

Mà ∠BMN đồng vị ∠BAC (4)

Từ (3) và (4) => MN//AC

b, Xét △CMB và △ANB có

\(\left\{{}\begin{matrix}\text{AB = AC (△ABC cân tại B)}\\\text{∠ABC chung}\\\text{BM=BN}\left(gt\right)\end{matrix}\right.\)

=>△CMB = △ANB (c.g.c)

=> ∠BMC = ∠BNC

=>∠BMN + ∠CMN = ∠BNM + ∠MNA

Mà ∠BMN = ∠BNM (△BMN cân tại B)

=>∠BMN + ∠CMN = ∠BMN + ∠MNA

=> ∠CMN = ∠MNA

=> △IMN cân tại I

=> MI=NI (5)

Mà BM = BN (6)

Từ (5) và (6) => BI là đường trung trực của MN

=> BI ⊥ MN

Có gì không hiểu bạn cứ hỏi mình haha