K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của Đức Tạ - Toán lớp 7 - Học toán với OnlineMath

28 tháng 2 2018

Hình vẽ:

28 tháng 2 2018

a) Ta có  \(\widehat{AHB}=90^o\)

Theo tính chất góc ngoài của tam giác, ta có:

\(\widehat{IAB}=\widehat{AHB}+\widehat{HBA}=90^o+\widehat{HBA}=\widehat{EBA}+\widehat{HBA}=\widehat{CBE}\)

Xét tam giác ABI và tam giác BEC có:

AI = BC (gt)

BA = EB (gt)

\(\widehat{IAB}=\widehat{CBE}\)  (cmt)

\(\Rightarrow\Delta ABI=\Delta BEC\left(c-g-c\right)\)

b) Do \(\Delta ABI=\Delta BEC\Rightarrow BI=EC\)

Gọi giao điểm của EC với AB và BI lần lượt là J và K.

Do \(\Delta ABI=\Delta BEC\Rightarrow\widehat{KBJ}=\widehat{BEK}\)

Vậy thì \(\widehat{KBJ}+\widehat{KJB}=\widehat{BEK}+\widehat{KJB}=90^o\)

Suy ra \(\widehat{BKJ}=90^o\) hay \(BI\perp CE\)

c) Chứng minh hoàn toàn tương tự ta có \(IC\perp BF\)

Gọi giao điểm của IC và BF là T.

Xét tam giác IBC có IH, CK, BT là các đường cao nên chúng đồng quy tại một điểm.

Vậy AH, EC, BF đồng quy tại một điểm.

29 tháng 5 2018

a) Ta có  \(\widehat{AHB}=90^o\)

Theo tính chất góc ngoài của tam giác, ta có:

\(\widehat{IAB}=\widehat{AHB}+\widehat{HBA}=90^o+\widehat{HBA}=\widehat{EBA}+\widehat{HBA}=\widehat{CBE}\)

Xét tam giác ABI và tam giác BEC có:

AI = BC (gt)

BA = EB (gt)

\(\widehat{IAB}=\widehat{CBE}\)  (cmt)

\(\Rightarrow\Delta ABI=\Delta BEC\left(c-g-c\right)\)

b) Do \(\Delta ABI=\Delta BEC\Rightarrow BI=EC\)

Gọi giao điểm của EC với AB và BI lần lượt là J và K.

Do \(\Delta ABI=\Delta BEC\Rightarrow\widehat{KBJ}=\widehat{BEK}\)

Vậy thì \(\widehat{KBJ}+\widehat{KJB}=\widehat{BEK}+\widehat{KJB}=90^o\)

Suy ra \(\widehat{BKJ}=90^o\) hay \(BI\perp CE\)

c) Chứng minh hoàn toàn tương tự ta có \(IC\perp BF\)

Gọi giao điểm của IC và BF là T.

Xét tam giác IBC có IH, CK, BT là các đường cao nên chúng đồng quy tại một điểm.

Vậy AH, EC, BF đồng quy tại một điểm.

29 tháng 5 2018

Vẽ hình đi bạn

Rồi mình giúp bạn làm

Vẽ hình xong gửi tin nhắn cho mình

:) Chúc bạn học tôt 

@@

24 tháng 1 2017

nmnbkbfhf

7 tháng 8 2017

a) Tam giác ABI và BEC có: AI = BC, \(\widehat{BAI}=\widehat{EBC}\left(=90^o+\widehat{ABH}\right)\), AB = BE

\(\Rightarrow\Delta ABI=\Delta BEC\left(c.g.c\right)\)

b) Từ câu a => BI = CE và \(\widehat{ABI}=\widehat{BEC}\Rightarrow\widehat{ABI}+\widehat{EBI}=\widehat{BEC}+\widehat{EBI}=90^o\Rightarrow BI⊥CE\)

c) Chứng minh tương tự ta được \(CI⊥BF\)

Xét tam giác BIC có AH, CE, BF là ba đường cao nên đồng quy tại một điểm.

28 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của Đức Tạ - Toán lớp 7 - Học toán với OnlineMath

12 tháng 2 2016

Vẽ hình cho mk vs bn ơi.....Mk k vẽ đc

12 tháng 2 2016

Ui pn Trần Hồ Thùy Trang ko bít vẽ hình bài này á ?

20 tháng 1 2016

A B C E I F