Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left\{{}\begin{matrix}MN\perp AH\\BC\perp AH\end{matrix}\right.\Rightarrow MN//BC\Rightarrow BCMN\) là hthang
\(b,MN//BC\Rightarrow\widehat{CBM}=\widehat{BMN}\\ Mà.\widehat{NBM}=\widehat{CBM}\left(t/c.phân.giác\right)\\ \Rightarrow\widehat{BMN}=\widehat{NBM}\)
Do đó tam giác BMN cân tại N nên \(BM=MN\)
a) Ta có: ΔABH vuông tại H(AH⊥BC)
nên \(\widehat{HAB}+\widehat{ABH}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{HAB}+\widehat{ABM}=90^0\)(1)
Ta có: tia AB nằm giữa hai tia AD,AM(gt)
nên \(\widehat{DAB}+\widehat{MAB}=\widehat{MAD}\)
hay \(\widehat{DAB}+\widehat{MAB}=90^0\)(2)
Ta có: ΔABC vuông tại A(gt)
mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(BM=\dfrac{BC}{2}\)(M là trung điểm của BC)
nên AM=BM
Xét ΔABM có AM=BM(cmt)
nên ΔABM cân tại M(Định nghĩa tam giác cân)
⇒\(\widehat{MBA}=\widehat{MAB}\)(hai góc ở đáy)(3)
Từ (1), (2) và (3) suy ra \(\widehat{HAB}=\widehat{DAB}\)
mà tia AB nằm giữa hai tia AH,AD
nên AB là tia phân giác của \(\widehat{DAH}\)(đpcm)
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB
hay ABNM là hình thang
a) Ta có:
\(NM \bot AH\) (gt)
\(BC \bot AH\) (gt)
Suy ra \(NM\) // \(BC\)
Suy ra \(BNMC\) là hình thang
b) Vì \(NM\) // \(BC\) (cmt)
Suy ra \(\widehat {{\rm{NMB}}} = \widehat {{\rm{MBC}}}\) (so le trong)
Mà \(\widehat {{\rm{MBN}}} = \widehat {{\rm{MBC}}}\) (do \(MB\) là phân giác)
Suy ra \(\widehat {{\rm{MBN}}} = \widehat {{\rm{NMB}}}\)
Suy ra \(\Delta MNB\) cân tại \(N\)
Suy ra \(BN = NM\)