K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2015

bài này khó quá với lại ít người học lớp 9

7 tháng 6 2015

TG ABH ~ TG ACK (g.g) \(\Rightarrow\frac{AH}{AK}=\frac{AB}{AC}\Rightarrow\frac{AH}{AB}=\frac{AK}{AC}\Rightarrow\)TG AHK ~ TG ABC(c.g.c)

\(\Rightarrow\frac{S_{AHK}}{S_{ABC}}=\left(\frac{AH}{AB}\right)^2=\cos^2A\Rightarrow S_{AHK}=S_{ABC}.\cos^2A\)\(=S_{ABC}.\left(\frac{\sqrt{3}}{2}\right)^2=\frac{3}{4}S_{ABC}\left(1\right)\)

\(S_{BCHK}=S_{ABC}-S_{AHK}=S_{ABC}-\frac{3}{4}S_{ABC}=\frac{1}{4}S_{ABC}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\)SAHK=3SBCHK

 

30 tháng 6 2016

TA CÓ \(\Delta ADB\)đồng dạng \(\Delta AEC\)(g-g)

\(\Rightarrow\)\(\frac{AD}{AB}=\frac{AE}{AC}\)

Xét \(\Delta AED\)và \(\Delta ACB\) có :

góc A chung

\(\frac{AD}{AB}=\frac{AE}{AC}\)(CMT)

\(\Rightarrow\Delta AED\infty\Delta ACB\)(c-g-c)

\(\frac{S\Delta AED}{S\Delta ACB}=\left(\frac{AD}{AB}\right)^2\)=\(\frac{3}{4}\)

\(\Rightarrow\frac{AD}{AB}=\frac{\sqrt{3}}{2}\)

\(\Rightarrow\cos A=\frac{\sqrt{3}}{2}\)

\(\Rightarrow\)góc A=60 ĐỘ

30 tháng 6 2016

cảm ơn bạn nhiều nha!!!!!!!!!!!!!!!!

BA/AC=3/4

nên HB/HC=(3/4)^2=9/16

=>HB/9=HC/16=(HB+HC)/(9+16)=15/25=0,6

=>HB=5,4cm; HC=9,6cm

11 tháng 10 2023

3:

Xét ΔCEH vuông tại E và ΔCFA vuông tại F có

\(\widehat{FCA}\) chung

Do đó: ΔCEH đồng dạng với ΔCFA

=>CE/CF=CH/CA

=>\(CE\cdot CA=CH\cdot CF\)

Xét ΔCDH vuông tại D và ΔCFB vuông tại F có

\(\widehat{FCB}\) chung

Do đó: ΔCDH đồng dạng với ΔCFB

=>CD/CF=CH/CB

=>CD*CB=CH*CF

=>CD*CB=CH*CF=CE*CA

Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

\(\widehat{EBC}\) chung

Do đó: ΔBDH đồng dạng với ΔBEC

=>BD/BE=BH/BC

=>\(BD\cdot BC=BH\cdot BE\)

Xét ΔBDA vuông tại D và ΔBFC vuông tại F có

góc DBA chung

Do đó: ΔBDA đồng dạng với ΔBFC

=>BD/BF=BA/BC

=>BD*BC=BF*BA

=>BD*BC=BF*BA=BH*BE

\(AH\cdot AD+BH\cdot BE=AF\cdot AB+BF\cdot BA=BA^2\)

\(AH\cdot AD+CH\cdot CF=AE\cdot AC+CE\cdot CA=AC^2\)

\(BH\cdot BE+CH\cdot CF=BD\cdot BC+CD\cdot CB=BC^2\)

Do đó: \(2\left(AH\cdot AD+BH\cdot BE+CH\cdot CF\right)=BA^2+AC^2+BC^2\)

=>\(AH\cdot AD+BH\cdot BE+CH\cdot CF=\dfrac{AB^2+AC^2+BC^2}{2}\)

a) Xét tứ giác BNHM có 

\(\widehat{BNH}\) và \(\widehat{BMH}\) là hai góc đối

\(\widehat{BNH}+\widehat{BMH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: BNHM là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

2 tháng 4 2021

cậu ơi b,c luôn được không cậu

22 tháng 11 2016

Đường tròn c: Đường tròn qua A với tâm O Đường tròn d: Đường tròn qua A với tâm E_1 Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h_1: Đoạn thẳng [A, C] Đoạn thẳng h: Đoạn thẳng [C, K] Đoạn thẳng k: Đoạn thẳng [H, B] Đoạn thẳng l: Đoạn thẳng [A, E] Đoạn thẳng O_1: Đoạn thẳng [A, D] Đoạn thẳng m: Đoạn thẳng [B, E] Đoạn thẳng n: Đoạn thẳng [D, C] Đoạn thẳng p: Đoạn thẳng [K, H] Đoạn thẳng r: Đoạn thẳng [A, J] A = (-1.14, 6.9) A = (-1.14, 6.9) A = (-1.14, 6.9) B = (-2.7, 1.44) B = (-2.7, 1.44) B = (-2.7, 1.44) C = (5.44, 1.46) C = (5.44, 1.46) C = (5.44, 1.46) Điểm H: Giao điểm của i, h_1 Điểm H: Giao điểm của i, h_1 Điểm H: Giao điểm của i, h_1 Điểm K: Giao điểm của j, f Điểm K: Giao điểm của j, f Điểm K: Giao điểm của j, f Điểm D: Giao điểm của c, k Điểm D: Giao điểm của c, k Điểm D: Giao điểm của c, k Điểm E: Giao điểm của d, h Điểm E: Giao điểm của d, h Điểm E: Giao điểm của d, h Điểm J: Giao điểm của c, d Điểm J: Giao điểm của c, d Điểm J: Giao điểm của c, d I

Kẻ đường cao AJ, trực tâm của tam giác là I. Khi đó AKIH là tứ giác nội tiếp nên \(\widehat{AKH}=\widehat{AIH}\) (Cùng chắn cung AH)

Lại có \(\widehat{AIH}=\widehat{ACB}\) (Cùng phụ với \(\widehat{HAI}\) ). Vậy thì \(\widehat{AKH}=\widehat{ACB}\)

Vậy thì \(\Delta AKH\sim\Delta ACB\left(g-g\right)\Rightarrow\frac{AK}{AC}=\frac{AH}{AB}\Rightarrow AK.AB=AH.AC\left(1\right)\)

Xét tam giác vuông ABE, áp dụng hệ thức lượng ta có AE2 = AK.AB. Tương tự AD2 = AH.AC  (2)

Từ (1) và (2) suy ra AE = AD (đpcm)