K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác BNHM có 

\(\widehat{BNH}\) và \(\widehat{BMH}\) là hai góc đối

\(\widehat{BNH}+\widehat{BMH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: BNHM là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

2 tháng 4 2021

cậu ơi b,c luôn được không cậu

a: góc HMC+góc HNC=180 độ

=>HMCN nội tiếp

b: góc CED=góc CAD

góc CDE=góc CAE

mà góc CAD=góc CAE(=góc CBD)

nên góc CED=góc CDE

=>CD=CE

17 tháng 9 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét tứ giác AEDC có:

∠(AEC) = ∠(ADC) =  90 0

Mà 2 góc này cùng nhìn cạnh AC

⇒ Tứ giác AEDC là tứ giác nội tiếp

5 tháng 7 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

c) Do tứ giác AEDC là tứ giác nội tiếp nên ∠(CAB) = ∠(IDB) (cùng bù ∠(CDE) )

Mặt khác ∠(CAB) = ∠(CMB) (2 góc nội tiếp cùng chắn cung BC)

⇒ ∠(CMB) = ∠(IDB)

⇒ Tứ giác CMID là tứ giác nội tiếp ( Góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối của đỉnh đó)

11 tháng 3 2022

Do BM là tiếp tuyến của đường tròn nên \widehat{OBM}=90^o

Xét đường tròn (O) có AD là một dây cung. Lại có E là trung điểm AD nên theo tính chất của đường kính và dây cung, ta có OE\perp AD hay \widehat{OEM}=90^o.

Xét tứ giác OEBM có \widehat{OBM}=\widehat{OEM}=90^o, chúng lại là hai góc kề nhau nên OEBM là tứ giác nội tiếp.

                   
11 tháng 3 2022

Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O (AB < AC). Hai tiếp tuyến tại B và C cắt nhau tại MAM cắt đường tròn (O) tại điểm thứ hai D. Gọi E là trung điểm đoạn AD. Chứng minh OEBM là tứ giác nội tiếp.

theo bai ta co  là trung điểm đoạn AD

9 tháng 6 2021

a) Ta có: \(\angle AEB=\angle ADB=90\Rightarrow ABDE\) nội tiếp

b) Vì AK là đường kính \(\Rightarrow\angle ACK=\angle ABK=90\)

\(\Rightarrow\left\{{}\begin{matrix}CK\bot AC\\BK\bot AB\end{matrix}\right.\) mà \(\left\{{}\begin{matrix}BH\bot AC\\CH\bot AC\end{matrix}\right.\Rightarrow\) \(BH\parallel CK,CH\parallel BK\)

\(\Rightarrow BHCK\) là hình bình hành

c) Vì F là giao điểm của CH và AB \(\Rightarrow CF\bot AB\)

Ta có: \(\dfrac{AD}{HD}+\dfrac{BE}{HE}+\dfrac{CF}{HF}=\dfrac{AD.BC}{HD.BC}+\dfrac{BE.AC}{HE.AC}+\dfrac{CF.AB}{HF.AB}\)

\(=\dfrac{S_{ABC}}{S_{HBC}}+\dfrac{S_{ABC}}{S_{AHC}}+\dfrac{S_{ABC}}{S_{AHB}}=S_{ABC}\left(\dfrac{1}{S_{HBC}}+\dfrac{1}{S_{AHC}}+\dfrac{1}{S_{AHB}}\right)\)

\(\ge S_{ABC}.\dfrac{9}{S_{HBC}+S_{HAC}+S_{AHB}}\)(BĐT Schwarz) \(=S_{ABC}.\dfrac{9}{S_{ABC}}=9\)

\(\Rightarrow Q_{min}=9\)undefined

28 tháng 1 2022

tưởng tổng 2 góc đối =180 thì mới là tứ giác nội tiếp

 

22 tháng 11 2022

a: Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>BD//CH

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>CD//BH

Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

b: BHCD là hình bình hành

nên BC cắt HD tại trung điểm của mỗi đường

=>I là trung điểm của HD

Xét ΔDAH có DI/DH=DO/DA

nen Io//AH và IO=AH/2

=>AH=2OI

c: G là trọng tâm

nên AG=2AI

Xét ΔAHD có

AI là trung tuyến

AG=2/3AI

DO đó: G là trọng tâm

26 tháng 4 2023

giải thích rõ hơn câu c dùm mk dc không ạ