K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2021

Áp dụng hệ thức lượng trong tam giác vuông có:

\(MD^2=ND.DP\)\(\Rightarrow ND=\dfrac{MD^2}{DP}=\dfrac{12^2}{16}=9cm\)

\(\dfrac{1}{DK^2}=\dfrac{1}{ND^2}+\dfrac{1}{DM^2}=\dfrac{25}{1296}\)

\(\Rightarrow DK=\dfrac{36}{5}\) (cm)

Vậy...

DK =36/5 (cm) nha

Xét ΔMDP vuông tại D có

\(MP^2=MD^2+DP^2\)

hay DP=4(cm)

Xét ΔMPQ vuông tại M có MD là đường cao ứng với cạnh huyền QP, ta được:

\(MP^2=DP\cdot QP\)

hay QP=6,25(cm)

a: Xét ΔDEF có \(EF^2=DE^2+DF^2\)

nên ΔDEF vuông tại D

9 tháng 3 2017

a, Ta có ∆DEF vuông vì  D E 2 + D F 2 = F E 2

b, c, Tìm được: DK = 24 5 cm và HK = 32 5 cm

K D E ^ ≈ 36 0 52 ' ; K E D ^ = 35 0 8 '

d, Tìm được DM=3cm, FM=5cm và EM =  3 5 cm

e, f, Ta có:  sin D F K ^ = D K D F ;  sin D F E ^ = D E E F

=>  D K D F = D E E F => ED.DF = DK.EF

a: Xét ΔDEF có \(EF^2=DE^2+DF^2\)

nên ΔDEF vuông tại D

b: Xét ΔDEF vuông tại D có DK là đường cao 

nên \(\left\{{}\begin{matrix}DK\cdot FE=DE\cdot DF\\DF^2=FK\cdot FE\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DK=4.8\left(cm\right)\\FK=6.4\left(cm\right)\end{matrix}\right.\)

20 tháng 8 2021

cau C va cau D dau ban?

a: Xét tứ giác MNDH có

\(\widehat{MHN}=\widehat{MDN}=90^0\)

Do đó: MNDH là tứ giác nội tiếp

b: Xét ΔNDH và ΔNIP có

\(\widehat{DNH}\) chung

\(\widehat{NDH}=\widehat{NIP}\)

Do đó: ΔNDH∼ΔNIP

3 tháng 10 2021

a) Xét tam giác MND có:

\(MN^2+MD^2=10^2+24^2=676\)

\(DN^2=26^2=676\)

\(\Rightarrow MN^2+MD^2=DN^2\)

=> Tam giác MND vuông tại M(Pytago đảo)

b) Áp dụng HTL:

\(MI.DN=MN.MD\)

\(\Rightarrow MI=\dfrac{MN.MD}{DN}=\dfrac{10.24}{26}=\dfrac{120}{13}\left(cm\right)\)

c) Xét tứ giác MKID có:

\(\widehat{KMD}=\widehat{MKI}=\widehat{MDI}=90^0\)

=> Tứ giác MKID là hình chữ nhật

=> HK=MI