K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔMNH vuông tại H và ΔMPH vuông tại H có 

MN=MP(ΔMNP cân tại M)

MH chung

Do đó: ΔMHN=ΔMPH(cạnh huyền-cạnh góc vuông)

Suy ra: HN=HP(hai cạnh tương ứng)

b) Xét ΔINH vuông tại I và ΔEPH vuông tại E có 

HN=HP(cmt)

\(\widehat{N}=\widehat{P}\)(Hai góc ở đáy của ΔMNP cân tại M)

Do đó: ΔINH=ΔEPH(cạnh huyền-góc nhọn)

Suy ra: HI=HE(Hai cạnh tương ứng)

Xét ΔHIE có HI=HE(cmt)

nên ΔHIE cân tại H(Định nghĩa tam giác cân)

1 tháng 2 2022

a) Xét \(\Delta MNK\left(\widehat{M}=90^o\right)\) và \(\Delta QNK\left(\widehat{Q}=90^o\right)\) có:

\(\widehat{MNK}=\widehat{QNK}\) (giả thiết)

\(NK\) là cạnh chung

\(\Rightarrow\Delta MNK=\Delta QNK\left(ch.gn\right)\)

b) Vì \(\Delta MNK=\Delta QNK\left(cmt\right)\)

\(\Rightarrow MN=QN\) (\(2\) cạnh tương ứng)

\(\Rightarrow\Delta MNQ\) cân tại \(N\)

Mà \(\widehat{MNQ}=60^o\)

\(\Rightarrow\Delta MNQ\) đều

Vì \(NK\) là tia phân giác \(\widehat{MNP}\) (giả thiết)

\(\Rightarrow\widehat{MNK}=\widehat{QNK}=\dfrac{\widehat{MNP}}{2}=\dfrac{60^o}{2}=30^o=\widehat{NPK}\)

\(\Rightarrow\Delta NKP\) cân tại \(K\)

c) Vì \(\Delta NMQ\) đều (chứng minh trên)

\(\Rightarrow NM=MQ=NQ=8cm\)

Xét \(\Delta NMP\left(\widehat{M}=90^o\right)\) có:

\(PN=2MN=2.8=16cm\)

\(\Rightarrow PQ=16-8=8cm\)

a: Xét ΔMNK vuông tại M và ΔQNK vuông tại Q có

NK chung

\(\widehat{MNK}=\widehat{QNK}\)

Do đó: ΔMNK=ΔQNK

b: Ta có: ΔMNK=ΔQNK

nên NM=NQ

=>ΔNMQ cân tại N

mà \(\widehat{MNQ}=60^0\)

nên ΔMNQ đều

Xét ΔNKQ có 

\(\widehat{KPN}=\widehat{KNP}\)

nên ΔNKQ cân tại K

c: Xét ΔMNP vuông tại M có 

\(\cos N=\dfrac{MN}{NP}\)

=>NP=16(cm)

=>\(MP=8\sqrt{3}\left(cm\right)\)

a: Xet ΔKNP vuông tại K và ΔHPN vuông tại H có

NP chung

góc KNP=góc HPN

=>ΔKNP=ΔHPN

b: ΔKNP=ΔHPN

=>góc ENP=góc EPN

=>ΔENP cân tại E

c: Xét ΔMKE vuông tại K và ΔMHE vuông tại H có

ME chung

MK=MH

=>ΔMKE=ΔMHE

=>góc KME=góc HME

=>ME là phân giác của góc NMP

a: Xét ΔMNQ vuông tại M và ΔHNQ vuông tại H có

NQ chung

\(\widehat{MNQ}=\widehat{HNQ}\)

Do đó: ΔMNQ=ΔHNQ

b: ta có: ΔMNQ=ΔHNQ

nên NM=NH

hay ΔNHM cân tại N 

mà \(\widehat{MNH}=60^0\)

nên ΔNHM đều

a: ta có: ΔMNP cân tại M

mà MH là đường cao

nên H là trung điểm của NP

hay HN=HP

b: NH=NP/2=8/2=4(cm)

=>MH=3(cm)

c: Xét ΔMDH vuông tại D và ΔMEH vuông tại E có

MH chung

\(\widehat{DMH}=\widehat{EMH}\)

Do đó: ΔMDH=ΔMEH

Suy ra: HD=HE

hay ΔHED cân tại H