Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMHN vuông tại H có HD là đường cao ứng với cạnh huyền MN, ta được:
\(MD\cdot MN=MH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔMHP vuông tại H có HE là đường cao ứng với cạnh huyền MP, ta được:
\(ME\cdot MP=MH^2\left(2\right)\)
Từ (1) và (2) suy ra \(MD\cdot MN=ME\cdot MP\)
a) Xét (O) có
ΔNDP nội tiếp đường tròn(N,D,P∈(O))
NP là đường kính của (O)(gt)
Do đó: ΔNDP vuông tại D(Định lí)
⇒ND⊥DP tại D
hay ND⊥MP(đpcm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔNMP vuông tại N có ND là đường cao ứng với cạnh huyền MP, ta được:
MN2=MD⋅MPMN2=MD⋅MP(đpcm)
b) Vì N,E∈(O) và N,O,E không thẳng hàng
nên NE là dây của (O)
Xét (O) có
OM là một phần đường kính
NE là dây(cmt)
OM⊥NE tại H(gt)
Do đó: H là trung điểm của NE(Định lí đường kính vuông góc với dây)(đpcm)
a, Vì \(NP^2=46,24=10,24+36=MN^2+MP^2\) nên tg MNP vuông tại M
b, Áp dụng HTL: \(\left\{{}\begin{matrix}KN=\dfrac{MN^2}{NP}=\dfrac{128}{85}\left(cm\right)\\KP=\dfrac{MP^2}{NP}=\dfrac{90}{17}\left(cm\right)\\MK=\sqrt{KN\cdot NP}=\dfrac{48}{17}\left(cm\right)\end{matrix}\right.\)
c, \(S_{MNP}=\dfrac{1}{2}MN\cdot MP=\dfrac{1}{2}\cdot6\cdot3,2=9,6\left(cm^2\right)\)
b: MD*MC=MH*DC=2*a
a: Xet ΔBEC vuông tại B và ΔCFD vuông tại C có
BE=CF
BC=CD
=>ΔBEC=ΔCFD
=>góc BEC=góc CFD
=>góc CFD+góc FCM=90 độ
=>CE vuông góc BD
Xét ΔDMC vuông tại D và ΔCBE vuông tại B có
góc MCD=góc BEC
=>ΔDMC đồng dạng với ΔCBE
\(S_{CBE}=\dfrac{1}{2}\cdot S_{BAC}=\dfrac{1}{4}\cdot S_{ABCD}\)
ΔDMC đồng dạng với ΔCBE
=>\(\dfrac{S_{DMC}}{S_{CBE}}=\left(\dfrac{DC}{CE}\right)^2=\left(\dfrac{2\cdot BE}{\sqrt{\left(2\cdot BE\right)^2+BE^2}}\right)^2=\left(\dfrac{2}{\sqrt{5}}\right)^2=\dfrac{4}{5}\)
=>\(S_{DMC}=\dfrac{4}{5}\cdot S_{CBE}=\dfrac{4}{5}\cdot\dfrac{1}{4}\cdot S_{ABCD}=\dfrac{1}{5}\cdot S_{ABCD}\)