Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ
Ta có \(\left\{{}\begin{matrix}SA\perp AB\\AB\perp AD\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SAD\right)\Rightarrow AB\perp SI\) (1)
Do \(\Delta SAD\) đều \(\Rightarrow SI\perp AD\) (2)
(1), (2) \(\Rightarrow SI\perp\left(ABCD\right)\)
Dễ dàng nhận ra ABKD là hình vuông
\(BD=\sqrt{AB^2+AD^2}=a\sqrt{2}\) ; \(BC=\sqrt{BK^2+CK^2}=a\sqrt{2}\)
\(\Rightarrow BD^2+BC^2=4a^2=CD^2\)
\(\Rightarrow\Delta DBC\) vuông cân tại B \(\Rightarrow CB\perp BD\)
Kéo dài IH và CB cắt nhau tại K
\(IH//BD\) (đường trung bình) \(\Rightarrow BC\perp IH\Rightarrow CK\perp\left(SHI\right)\)
\(\Rightarrow\widehat{CSK}\) là góc giữa SC và (SHI)
\(IC=\sqrt{ID^2+CD^2}=\sqrt{\left(\frac{AD}{2}\right)^2+CD^2}=\frac{a\sqrt{17}}{2}\)
\(SI=\frac{a\sqrt{3}}{2}\) (trung tuyến trong tam giác đều cạnh a)
\(\Rightarrow SC=\sqrt{SI^2+IC^2}=a\sqrt{5}\)
\(BK=BH.sin\widehat{KHB}=\frac{AB}{2}.\frac{IA}{IH}=\frac{AB}{2}.\frac{AB}{2\sqrt{AH^2+IA^2}}=\frac{a\sqrt{2}}{4}\)
\(\Rightarrow CK=BC+BK=a\sqrt{2}+\frac{a\sqrt{2}}{4}=\frac{5a\sqrt{2}}{4}\)
\(\Rightarrow sin\widehat{CSK}=\frac{CK}{SC}=\frac{\sqrt{10}}{4}\Rightarrow\widehat{CSK}\approx52^014'\)
Lời giải:
Kẻ $SH$ vuông góc với $SB$
Vì $SA$ vuông góc với đáy nên \(SA\perp BC\). Tam giác $ABC$ vuông tại $B$ nên \(AB\perp BC\)
Ta có:
\(\left\{\begin{matrix}
SA\perp BC\\
AB\perp BC\end{matrix}\right.\Rightarrow (SAB)\perp BC\)
Mà \(AH\subset (SAB)\Rightarrow AH\perp BC\)
Kết hợp với \(AH\perp SB\Rightarrow AH\perp (SBC)\)
Do đó \(d(A,(SBC))=AH\)
Xét tam giác $SAB$ vuông tại $A$ có đường cao $AH$ thì theo hệ thức lượng trong tam giác vuông ta có:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{SA^2}=\frac{1}{a^2}+\frac{1}{a^2}\)
\(\Rightarrow AH=\frac{a\sqrt{2}}{2}\)
Vậy \(d(A,(SBC))=\frac{a\sqrt{2}}{2}\)
Câu 1:
\(ABCI\) là hình vuông \(\Rightarrow\left\{{}\begin{matrix}CD=\sqrt{IC^2+ID^2}=a\sqrt{2}\\AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\end{matrix}\right.\)
\(\Rightarrow AC^2+CD^2=AD^2\Rightarrow\Delta ACD\) vuông cân tạiC
\(\Rightarrow OC\perp CD\) \(\Rightarrow CD\perp\left(SOC\right)\)
Từ O kẻ \(OH\perp SC\Rightarrow OH\perp\left(SCD\right)\) \(\Rightarrow OH\perp SD\)
\(\left\{{}\begin{matrix}BI\perp SO\\BI\perp OC\end{matrix}\right.\) \(\Rightarrow BI\perp\left(SOC\right)\Rightarrow BI\perp OH\)
\(SC=\sqrt{SO^2+OC^2}=a\sqrt{2}\) \(\Rightarrow SH=\frac{SO^2}{SC}=\frac{3a\sqrt{2}}{4}\)
Qua H kẻ đường thẳng song song CD cắt SD tại K
\(\frac{SH}{SC}=\frac{HK}{CD}\Rightarrow HK=\frac{SH.CD}{SC}=\frac{3a}{4}\)
Trên toa OI lấy điểm P sao cho \(OP=\frac{3a}{4}\)
\(\Rightarrow OHKP\) là hình chữ nhật \(\Rightarrow OH//KP\Rightarrow KP\) là đoạn vuông góc chung của \(BI\) và SD
\(\frac{1}{OH^2}=\frac{1}{SO^2}+\frac{1}{OC^2}\Rightarrow KP=OH=\frac{SO.OC}{\sqrt{SO^2+OC^2}}=\frac{a\sqrt{6}}{4}\)
Câu 2:
a/ Kẻ \(MH\perp AC\Rightarrow MH\perp\left(SAC\right)\)
\(\Rightarrow\widehat{MSH}\) là góc giữa SM và (SAC)
\(SM=\sqrt{SA^2+\left(\frac{AB}{2}\right)^2}=a\sqrt{10}\) ; \(MH=\frac{1}{2}\frac{2a\sqrt{3}}{2}=\frac{a\sqrt{3}}{2}\)
\(sin\widehat{MSH}=\frac{MH}{SM}=\frac{\sqrt{30}}{20}\Rightarrow\widehat{MSH}\approx15^053'\)
b/ \(\left\{{}\begin{matrix}MC\perp AB\\MC\perp SA\end{matrix}\right.\) \(\Rightarrow MC\perp\left(SAB\right)\)
\(\Rightarrow\widehat{SMA}\) là góc giữa \(\left(SMC\right)\) và \(\left(ABC\right)\)
\(tan\widehat{SMA}=\frac{SA}{AM}=3\Rightarrow\widehat{SMA}\approx71^033'\)
c/ Gọi N là trung điểm AC \(\Rightarrow NG=\frac{1}{3}NS\) (t/c trọng tâm)
\(\Rightarrow d\left(G;\left(SAB\right)\right)=\frac{1}{3}d\left(N;\left(SAB\right)\right)\)
Từ N kẻ \(NK\perp AB\Rightarrow NK\perp\left(SAB\right)\)
\(\Rightarrow NK=d\left(N;\left(SAB\right)\right)\)
\(NK=\frac{1}{2}.\frac{2a\sqrt{3}}{2}=\frac{a\sqrt{3}}{2}\Rightarrow d\left(G;\left(SAB\right)\right)=\frac{a\sqrt{3}}{6}\)
Bạn tự vẽ hình
Gọi N là trung điểm BC \(\Rightarrow AN=\frac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều ABC cạnh a)
\(SN=\frac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều SBC cạnh a)
\(\Rightarrow AN=SN=SA=\frac{a\sqrt{3}}{2}\Rightarrow\Delta SAN\) đều
\(\left\{{}\begin{matrix}BC\perp SN\\BC\perp AN\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAN\right)\)
\(\left(P\right)\perp BC\Rightarrow\left(P\right)//\left(SAN\right)\)
Từ M kẻ \(MD//AN\left(D\in BC\right)\), từ M kẻ \(ME//SA\left(E\in SB\right)\)
\(\Rightarrow\Delta MDE\) là thiết diện của (P) và chóp
Theo đt Talet: \(\frac{MD}{AN}=\frac{ME}{SA}=\frac{DE}{SN}=\frac{BM}{AB}\)
\(\Rightarrow MD=ME=DE=\frac{AN.BM}{AB}=\frac{\frac{a\sqrt{3}}{2}\left(a-b\right)}{a}=\frac{\sqrt{3}}{2}\left(a-b\right)\)
\(\Rightarrow\Delta MDE\) là tam giác đều cạnh \(\frac{\sqrt{3}}{2}\left(a-b\right)\)
Theo công thức diện tích tam giác đều:
\(S_{MDE}=\frac{\left(\frac{\sqrt{3}}{2}\left(a-b\right)\right)^2\sqrt{3}}{4}=\frac{3\sqrt{3}}{16}\left(a-b\right)^2\)
Sai . thiếu từ "kề"
Sửa lại :
Nếu 1 cạnh góc vuông và 1 góc nhọn kề cạnh ấy của △ vuông này bằng 1 cạnh góc vuông và 1 góc nhọn kề cạnh ấy của △ vuông kia thì 2 △ vuông đó bằng nhau .
Đây là trường hợp bằng nhau thứ 2 của tam giác vuông : cạnh góc vuông - góc nhọn kề .
Giải:
Xét \(\Delta MKO,\Delta MKH\) có:
\(\widehat{M_1}=\widehat{M_2}\left(gt\right)\)
MK: cạnh chung
\(\widehat{MOK}=\widehat{MHK}=90^o\)
\(\Rightarrow\Delta MKO=\Delta MKH\) ( c.huyền - g.nhọn )
\(\Rightarrow MO=MH\) ( cạnh t/ứng )
\(\Rightarrow\Delta MOH\) cân tại M ( đpcm )
Vậy...