Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác AMIN có:
∠(MAN) = ∠(ANI) = ∠(IMA) = 90o
⇒ Tứ giác AMIN là hình chữ nhật (có 3 góc vuông).
b) ΔABC vuông có AI là trung tuyến nên AI = IC = BC/2
do đó ΔAIC cân có đường cao IN đồng thời là đường trung tuyến
⇒ NA = NC.
Mặt khác ND = NI (t/c đối xứng) nên ADCI là hình bình hành
Lại có AC ⊥ ID (gt). Do đó ADCI là hình thoi.
c) Ta có: AB2 = BC2 – AC2 (định lí Py-ta-go)
= 252 – 202 ⇒ AB = √225 = 15 (cm)
Vậy SABC = (1/2).AB.AC = (1/2).15.20 = 150 (cm2)
d) Kẻ IH // BK ta có IH là đường trung bình của ΔBKC
⇒ H là trung điểm của CK hay KH = HC (1)
Xét ΔDIH có N là trung điểm của DI, NK // IH (BK // IH)
Do đó K là trung điểm của DH hay DK = KH (2)
Từ (1) và (2) ⇒ DK = KH = HC ⇒ DK/DC= 1/3.
M A B N C D H
a/
Ta có
\(\widehat{MBC}+\widehat{CBN}=\widehat{MBN}=90^o\)
Xét tg NBC có
NC=NB (gt) => tg NBC cân tại N \(\Rightarrow\widehat{CBN}=\widehat{BCN}\)
\(\Rightarrow\widehat{MBC}+\widehat{CBN}=\widehat{MBC}+\widehat{BCN}=90^o\) (1)
Ta có
\(\widehat{ABN}+\widehat{ABM}=\widehat{MBN}=90^o\)
\(\widehat{ABM}=\widehat{BAM}\) (góc ở đáy tg cân)
\(\Rightarrow\widehat{ABN}+\widehat{ABM}=\widehat{ABN}+\widehat{BAM}=90^o\) (2)
Cộng 2 vế của (1) với (2) ta có
\(\widehat{MBC}+\widehat{BCN}+\widehat{ABN}+\widehat{BAM}=90^o+90^o=180^o\)
Xét tg ABC có
\(180^0-\widehat{ABC}=\left(\widehat{BCN}+\widehat{BAM}\right)\)
\(\Rightarrow\widehat{MBC}+\widehat{ABN}+180^o-\widehat{ABC}=180^o\)
\(\Rightarrow\widehat{MBC}+\widehat{ABN}=\widehat{ABC}\)
Mà
\(\widehat{MBC}+\widehat{ABN}+\widehat{ABC}=\widehat{MBN}=90^o\)
\(\Rightarrow\widehat{ABC}+\widehat{ABC}=90^o\Rightarrow\widehat{ABC}=45^o\)
b/
Từ N dựng đt vuông góc với BD ta có
tg NBC cân tại N (cmt)
\(\Rightarrow\widehat{HNC}=\widehat{HNB}\) (trong tg cân đường cao hạ từ đỉnh tg cân đồng thời là đường phân giác của góc ở đỉnh) (3)
Xét tg vuông MCD có
\(\widehat{MDC}+\widehat{MCD}=90^o\)
Xét tg vuông HNC có
\(\widehat{HNC}+\widehat{HCN}=90^o\)
Mà \(\widehat{MCD}=\widehat{HCN}\) (góc đối đỉnh)
\(\Rightarrow\widehat{MDC}=\widehat{HNC}\) (4)
Ta có
\(NH\perp BD;NB\perp BM\Rightarrow\widehat{HNB}=\widehat{MBD}\) (Góc có cạnh tương ứng vuông góc) (5)
Từ (3) (4) (5) \(\Rightarrow\widehat{MDC}=\widehat{MBD}\) => tg MBD cân tại M => MB=MD
Mà tg MAB cân => MB=MA
=> MD=MA => tg MAD vuông cân tại M
Xét tg vuông MAD có
\(AD=\sqrt{MD^2+MA^2}=\sqrt{MD^2+MD^2}=\sqrt{2}.MD\)