Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)Lấy C thuộc tia đối MA sao cho MC = MB => chi vi ABC = MA + MB + AB = MA + MC + 2R = AC + 2R.
=> Chu vi tam giác ABC lớn nhất <=> AC lớn nhất.
Xét tam giác MBC có góc BMC = 90độ và MC = MB(cách kẻ)
=> tam giác MBC vuông cân tại M => góc MCB = 45 độ
=> C thuộc cung chưa góc 45 độ dựng trên AB (1)
Lấy M' là điểm chính giữa nửa đường tròn đường kính AB (M' cùng phía với M).
Lấy D thuộc tia đối M'A sao cho M'D = M'A = M'B => AD = 2R
=> Ta cũng chứng minh được: D thuộc cung chứa góc 45độ dựng trên AB (2)
Từ (1) và (2) => C;D;A và B cùng thuộc 1 đường tròn.
Ta sẽ chứng minh được góc ABD = 90độ
=> AD là đường kính => AC ≤ AD (trong đường tròn đường kính là dây lớn nhất).
=> AC + 2R ≤ AD + 2R
=> AC + 2R ≤ 2R + 2R
=> AC + 2R ≤ 4R
=> Chu vi ABC ≤ 4R
Đạt được giá trị này <=> AC ≡ AD => M ≡ M'
=> M là điểm chính giữa nữa đường tròn đường kính AB
a: Kẻ BD vuông góc AC,CE vuông góc AB
góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
=>góc AED=góc ACB
=>ΔAED đồng dạng vơi ΔACB
Tâm M của đường tròn ngoại tiếp tứ giác BDCE là trung điểm của BC
Gọi H là giao của BD và CE
=>AH vuông góc BC tại N
Gọi giao của OM với (O) là A'
ΔOBC cân tại O
=>OM vuông góc BC
AN<=A'M ko đổi
=>\(S_{ABC}=\dfrac{1}{2}\cdot AN\cdot BC< =\dfrac{1}{2}\cdot A'M\cdot BC_{kođổi}\)
Dấu = xảy ra khi A trùng A'
=>A là điểm chính giữa của cung BC