Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Do ΔABC đều, BE và CF là tia phân giác của góc B, góc C nên ∠B1 = ∠B2 = ∠C1 = ∠C2 ⇒ AE = AF = BF = CE
∠FAB = ∠B1 => AF//BE
2. (1,0 điểm)
Tương tự câu 1) ta có AE//CF nên tứ giác AEOF là hình bình hành mà →AE = AF => →AE = AF nên tứ giác AEOF là hình thoi.
DOFN và DAFM có ∠FAE = ∠FOE (2 góc đối của hình thoi)
∠AFM = ∠FNO (2 góc so le trong)
=> ΔAFM đồng dạng với ΔONF (g-g)
⇒ AF/ON = AM/OF ⇔ AF.OF = AM.ON
mà AF = OF nên AF² = AM.ON
3. (1,0 điểm)
Có ∠AFC = ∠ABC = 600 và AEOF là hình thoi => ΔAFO và ΔAEO là các tam giác đều => AF=DF=AO
=> AO² = AM.MO
⇔ AM/AO = AO/ON và có ∠OAM = ∠AOE = 600 => ΔAOM và ΔONA đồng dạng.
=> ∠AOM = ∠ONA
Có 60º = ∠AOE = ∠AOM + ∠GOE = ∠ANO + GAE
=> ∠GAE = ∠GOE
mà hai góc cùng nhìn GE nên tứ giác AGEO nội tiếp
a,ta có góc MAB=90°; MNB=90°(gt);(góc nội tiếp chắn 1/2đtròn)
xét tứ giác AMNB có góc MAN+MNB=90°+90°=180°
suy ra AMNB nội tiếp
b, ta có góc CAB=90°(gt); CPB=90°( góc nội tiếp chắn 1/2đtròn)
xét tứ giác CPAB có góc CAB=CPB=90°
suy ra CPAB nội tiếp ( hai góc bằng nhau cùng chắn cung CB)
suy ra góc BCA=BPA(1)
góc PBA=PCA(2)
mà góc MPN=ACB=1/2sđcung MN(3)
góc PCA=PNM=1/2sđcung PM(4)
từ 1,3 suy ra góc ACB=MPN
từ 2,4 suy ra góc PNM=PBA
xét hai tam giác PAB và PMN có
góc APB=MPN(cmt)
góc PNM=PBA(cmt)
suy ra hai tam giác đó đồng dạng (đpcm)
c, ta có góc PDN=PCN=1/2sđ cung PN(1)
góc PAC=PBC(CPAB nội tiếp)(2)
mà góc PBC+PCB=90°(3)
từ 1,2,3 suy ra góc DAC+ADE=90°
suy ra DN vuông với AC
xét hai tam giác PCM và ECG có góc C chung
góc CEG=CPM=90°
suy ra hai tam giác đó đồng dạng
suy ra PC/EC=CM/CG
suy ra PC.CG=EC.CM(đpcm)
a. Ta thấy ngay tứ giác OBEC có hai góc vuông đối nhau nên nó là tứ giác nội tiếp.
b. Câu này cô thấy cần sửa đề thành AB.AP = AD.AE mới đúng.
Gọi Aq là tiếp tuyến tại A của đường tròn (O). Khi đó ta có: \(\widehat{APE}=\widehat{BAq}\) (so le trong)
Mà \(\widehat{BAq}=\widehat{BDA}\) (Cùng chắn cung BA) nên \(\widehat{APE}=\widehat{BDA}\)
Vậy thì \(\Delta ABD\sim\Delta AEP\left(g-g\right)\Rightarrow\frac{AB}{AE}=\frac{AD}{AP}\Rightarrow AB.AP=AE.AD\)
c. +) Ta thấy \(\Delta BDE\sim\Delta ABE\left(g-g\right)\Rightarrow\frac{BD}{AB}=\frac{BE}{AE}\)
Tương tự \(\Delta CDE\sim\Delta ACE\left(g-g\right)\Rightarrow\frac{CD}{AC}=\frac{DE}{AE}\)
Mà BE = CE nên \(\frac{BD}{AB}=\frac{CD}{AC}\)
Lại có \(\Delta ABD\sim\Delta AEP\left(g-g\right)\Rightarrow\frac{BD}{EP}=\frac{AB}{AE}\Rightarrow EP=\frac{BD.AE}{AB}\)
Tương tự \(\Delta ACD\sim\Delta AEQ\left(g-g\right)\Rightarrow\frac{AC}{AE}=\frac{CD}{EQ}\Rightarrow EQ=\frac{CD.AE}{AC}=\frac{BD.AE}{AB}=EP\)
Vậy EP = EQ.
+) Ta thấy ngay \(\Delta ABC\sim\Delta AQP\Rightarrow\frac{BC}{QP}=\frac{AC}{AP}\Rightarrow\frac{BC:2}{QP:2}=\frac{AC}{QP}\)
\(\Rightarrow\frac{MC}{PE}=\frac{AC}{AP}\)
Lại có \(\widehat{ACM}=\widehat{APE}\) (Cùng bằng \(\widehat{BDA}\))
Từ đó suy ra \(\Delta AMC\sim\Delta AEP\Rightarrow\widehat{MAC}=\widehat{PAE}\)
d. Ta có BD.AC = AB.CD
Lại có do ABCD là tứ giác nội tiếp nên
AD.BC = AB.CD + AC.BD = 2AB.CD (Định lý Ptoleme) \(\Rightarrow2MC.AD=2AB.CD\Rightarrow MC.AD=AB.CD\)
\(\Rightarrow\frac{MC}{AB}=\frac{CD}{AD}\)
Lại thấy \(\widehat{BAD}=\widehat{BCD}\Rightarrow\Delta BAD\sim\Delta MCD\left(c-g-c\right)\)
Mà \(\Delta BAD\sim\Delta MAC\Rightarrow\Delta MCD\sim\Delta MAC\)
\(\Rightarrow\frac{MC}{MA}=\frac{MD}{MC}\Rightarrow MA.MD=MC^2=\frac{BC^2}{4}.\)
Em không vẽ được hình, xin thông cảm
a, Ta có góc EAN= cungEN=cung EC+ cung EN
Mà cung EC= cung EB(E là điểm chính giữa cung BC)
=> góc EAN=cungEB+ cung EN=góc DFE (tính chất góc ở giữa)
=> tam giác AEN đồng dạng tam giác FED
Vậy tam giác AEN đồng dạng tam giác FED
b,Ta có EC=EB=EM
Tam giác EMC cân tại E => EMC=ECM
MÀ EMC+AME=180, ECM+ABE=180
=> AME = ABE
=> tam giác ABE= tam giác AME
=> AB=AM => tam giác ABM cân tại A
Mà AE là phân giác => AE vuông góc BM
CMTT => AC vuông góc EN
MÀ AC giao BM tại M
=> M là trực tâm tam giác AEN
Vậy M là trực tâm tam giác AEN
c, Gọi H là giao điểm OE với đường tròn (O) (H khác E) => O là trung điểm của EH
Vì M là trực tâm của tam giác AEN
=> \(EN\perp AN\)
Mà \(OI\perp AN\)(vì I là trung điểm của AC)
=> \(EN//OI\)
MÀ O là trung điểm của EH
=> I là trung điểm của MH (đường trung bình trong tam giác )
=> tứ giác AMNH là hình bình hành
=> AH=MN
Mà MN=NC
=> AH=NC
=> cung AH= cung NC
=> cung AH + cung KC= cung KN
Mà cung AH+ cung KC = góc KMC(tính chất góc ở giữa 2 cung )
NBK là góc nội tiếp chắn cung KN
=> gócKMC=gócKBN
Hay gócKMC=gócKBM
=> CM là tiếp tuyến của đường tròn ngoại tiếp tam giác MBK( ĐPCM)
Vậy CM là tiếp tuyến của đường tròn ngoại tiếp tam giác BMK
1. Do ΔABC đều, BE và CF là tia phân giác của góc B, góc C nên ∠B1 = ∠B2 = ∠C1 = ∠C2 ⇒ AE = AF = BF = CE
∠FAB = ∠B1 => AF//BE
2. (1,0 điểm)
Tương tự câu 1) ta có AE//CF nên tứ giác AEOF là hình bình hành mà →AE = AF => →AE = AF nên tứ giác AEOF là hình thoi.
DOFN và DAFM có ∠FAE = ∠FOE (2 góc đối của hình thoi)
∠AFM = ∠FNO (2 góc so le trong)
=> ΔAFM đồng dạng với ΔONF (g-g)
⇒ AF/ON = AM/OF ⇔ AF.OF = AM.ON
mà AF = OF nên AF² = AM.ON
3. (1,0 điểm)
Có ∠AFC = ∠ABC = 600 và AEOF là hình thoi => ΔAFO và ΔAEO là các tam giác đều => AF=DF=AO
=> AO² = AM.MO
⇔ AM/AO = AO/ON và có ∠OAM = ∠AOE = 600 => ΔAOM và ΔONA đồng dạng.
=> ∠AOM = ∠ONA
Có 60º = ∠AOE = ∠AOM + ∠GOE = ∠ANO + GAE
=> ∠GAE = ∠GOE
mà hai góc cùng nhìn GE nên tứ giác AGEO nội tiếp
Mk vẽ hình r nhưng ko bít đăng !