Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC có
D là trung điểm của AB(gt)
M là trung điểm của BC(gt)
Do đó: DM là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
⇒DM//AC và \(DM=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà E∈AC và \(AE=\dfrac{AC}{2}\)(E là trung điểm của AC)
nên DM//AE và DM=AE
Xét tứ giác ADME có
DM//AE(cmt)
DM=AE(cmt)
Do đó: ADME là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Khi ΔABC cân tại A thì AB=AC
mà \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)
và \(AE=\dfrac{AC}{2}\)(E là trung điểm của AC)
nên AD=AE
Hình bình hành ADME có AD=AE(cmt)
nên ADME là hình thoi(Dấu hiệu nhận biết hình thoi)
Vậy: Khi ΔABC cân tại A thì ADME là hình thoi
c) Khi ΔABC vuông tại A thì \(\widehat{A}=90^0\)
Hình bình hành ADME có \(\widehat{A}=90^0\)(cmt)
nên ADME là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Vậy: Khi ΔABC vuông tại A thì ADME là hình chữ nhật
d) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10cm
Xét ΔABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
hay \(AM=\dfrac{10}{2}=5cm\)
Vậy: Khi ΔABC vuông tại A thì AM=5cm
b: Ta có: A và H đối xứng nhau qua DF
nên DF là đường trung trực của AH
=>B là trung điểm của AH và DF⊥AH tại B
Xét tứ giác DBAC có
\(\widehat{ABD}=\widehat{ACD}=\widehat{BDC}=90^0\)
Do đó: DBAC là hình chữ nhật
c: Xét ΔDEF có
A là trung điểm của EF
AB//DE
Do đó: B là trung điểm của DF
Xét tứ giac DAFH có
B là trung điểm của DF
B là trung điểm của AH
Do đó: DAFH là hình bình hành
mà AD=AF
nên DAFH là hình thoi
a: Xét ΔDEF có
N là trung điểm của EF
P là trung điểm của DF
Do đó: NP là đường trung bình
=>NP//DE
DN=EF/2=10(cm)