K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2016

a, Xet tam giac CDE co : 

KC=KD va CI=IE

=> KI la tdb

=> KI=1/2DE va KI//DE          (1)

Xet tam giac 

Xét tam giác DOE co : 

DM=MO va ON=NE

=>MN la tdb

=> MN=1/2 DE va MN//DE       (2)

Từ(1)(2) suy ra : MNIK la HBH

b, Xét tam giác CDO co : 

KC=KD

DM=MO

=> KM là dtb tam giác CDO 

=> KM=1/2 OC

Va KM//OC 

=> KM vuông góc với MN =>M=90

Mà trong hình bình hành có một góc vuông là hình chữ nhật 

Vậy O là phải thỏa mãn diện kiến là trực tâm (giao điểm của 3 đường cao) đệ tứ giác MNIK là hình chữ nhật .

19 tháng 12 2021

a. Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC

Do đó BC=2MN=5(cm)

b. Vì MN là đtb tg ABC nên \(MN=\dfrac{1}{2}BC;MN\text{//}BC\left(1\right)\)

Vì I,K là trung điểm MB,MC nên IK là đtb tg MBC

Do đó \(IK=\dfrac{1}{2}BC;IK\text{//}BC\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow MN=IK;MN\text{//}IK\\ \Rightarrow MNIK\text{ là hbh}\)

c. Để MNIK là hcn thì \(MI\bot MN\)

Mà \(MI\equiv AB;MN\text{//}BC\Leftrightarrow AB\bot BC\)

Vậy ABC vuông tại A thì MNIK là hcn

d. Kẻ đường cao AH của tam giác ABC và AMN

Do đó \(\dfrac{S_{ABC}}{S_{AMN}}=\dfrac{\dfrac{1}{2}AH\cdot BC}{\dfrac{1}{2}AH\cdot MN}=\dfrac{BC}{MN}=2\)

\(\Rightarrow S_{AMN}=\dfrac{1}{2}S_{ABC}=\dfrac{a}{2}\)

12 tháng 9 2018

a) HS tự chứng minh

b) O nằm trên đường cao xuất phát từ đỉnh A của DABC

25 tháng 11 2018

a) N đối xứng với I qua P => NP vuông góc với AB => Góc NPB = 90

CMTT: Góc NQB = 90

Xét tứ giác BPNQ có 3 góc vuông => BPNQ là hình chữ nhật.

b) BPNQ là hình chữ nhật => PN = BQ = IN (I đối xứng với N qua P) ; BP = QN = QK (N đối xứng với K qua Q)

Xét tam giác IPB và tam giác BQK có IP = BQ, BP = KQ, góc IPB = góc BQK = 90

=> Hai tam giác bằng nhau => IBP = BKQ , BIP = KBQ, IB = KB

Góc IBK = IBP + PBQ + QBK = 90 + 90 = 180

=> I, B, K thẳng hàng ; mà IB = BK => B là trung điểm IK

c) BPNQ là hình vuông => BP = PN = NQ = QB <=> 2BP = 2PN = 2NQ = 2QB <=> AB = BC

Vậy tam giác ABC vuông cân tại B thì BPNQ là hình vuông.

d) Gọi giao điểm của AK và BN là O. Ta cần c/m : CI cắt BN tại O

Xét tứ giác ANKB có AB = NK (= 2PB) , AB // NK (PB // NQ)

=> ABKN là hình bình hành => AK cắt BN tại trung điểm của mỗi đường <=> O là trung điểm BN

CMTT ta có INCB ;à hình bình hành => IC cắt BN tại trung điểm của mỗi đường => IC cắt BN tại O

=> AK, BN, CI đồng quy tại O

25 tháng 9 2018

Bài khá dài đó.

Sorry nhé mik mới lớp 6 ak nên ko bít, tha lỗi nha!

ý kiến gì thì nhắn tin cho mik mai 7g

pp, ngủ ngon!

14 tháng 10 2019

Bạn Nữ hoàng Elsa lửa bn k biết thì đừng trả lời nhé

a: Xét ΔABD có 

M là trung điểm của AB

K là trung điểm của AD

Do đó: MK là đường trung bình của ΔBAD

Suy ra: MK//BD và \(MK=\dfrac{BD}{2}\left(1\right)\)

Xét ΔCBD có 

N là trung điểm của BC

I là trung điểm của CD

Do đó: NI là đường trung bình của ΔCBD

Suy ra: NI//BD và \(NI=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra MK//NI và MK=NI

hay MKIN là hình bình hành