K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

E A F B O C D Hình vẽ hơi xấu :V 1 2

a,Xét \(\Delta AOB\)và \(\Delta COD\)có :

\(OC=OA\)(gt)

\(OD=OB\)(gt)

\(O_1=O_2\)(đối đỉnh)

\(=>\Delta AOB=\Delta COD\left(c-g-c\right)\)

b,Ta có :\(DCO=BAO\)(cm câu a)

Do 2 góc này ở vị trí so le trong và bằng nhau

\(=>AB//CD\)

Xét \(\Delta DAO\)và \(\Delta BCO\)có :

\(OC=OA\)(gt)

\(OB=OD\)(gt)

\(COB=AOD\)(đối đỉnh)

\(=>\Delta DAO=\Delta BCO\left(c-g-c\right)\)

\(=>ODA=OBC\)(2 góc tương ứng)

Do 2 góc này ở vị trí so le trong và bằng nhau 

\(=>DA//BC\)

Gọi giao điểm của CE và DO là H

giao điểm của AO và BE là G

Lại có \(DCO=BAO=>\frac{DCO}{2}=\frac{BAO}{2}=>FAG=HCO\)

\(FGA=CGE\)( đối đỉnh) 

Xét \(\Delta AGF\)và \(\Delta CGE\):

\(AFG+FGA+FAG=GEC+CGE+ECG=180^0\)

Do \(FAG+FGA=CGE+ECG\)

\(=>CEG=AFG\)

Vì 2 góc này ở vị trí so le trong và bằng nhau 

\(=>CE//AF\)

c,Ta có \(CEB=AFG\)(cm câu b)

Mà \(AFG=\frac{CAB+DBA}{2}=\frac{CAB+CDB}{2}\)(CDB = DBA Ta cm ở câu a)

\(=>CEB=\frac{CAB+CDB}{2}\left(đpcm\right)\)

3 tháng 3 2020

O A B C D E F

a, xét ΔAOB và ΔCOD có : OA = OC (Gt) 

OB = OD (gt)

^AOB = ^COD (đối đỉnh)

=> ΔAOB = ΔCAOD (c-g-c)

b,    ΔAOB = ΔCAOD (Câu a)

=> ^CDO = ^OBA (định nghĩa) mà 2 góc này so le trong

=> DC // AB (Định lí)

xét ΔODA và ΔOBC có : OA = OC (gt)

OB = OD (gt)

^DOA = ^BOC (đối đỉnh)

=> ΔODA = ΔOBC (c-g-c)

=> ^ADO = ^OBC (đn) mà 2 góc này so le trong

=> AD // BC (định lí)

ΔAOB = ΔCOD (câu a)

=> ^DCO = ^OAB (định nghĩa)

CE là phân giác của ^DCO (gt) => ^ECO = ^DCO : 2 (tính chất)

AF là phân giác của ^OAB (gt) => ^OAF = ^OAB : 2 (tính chất)

=> ^ECO = ^OAF mà 2 góc này so le trong

=> CE // AF (định lí)

c, mjnh không biết làm