K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2017

a)Xét tam giác OBD và tam giác OAD ta có:

*OD là cạnh chung

*OB=OA (gt)

*góc AOD=góc BOD(vì Od là phân giác của góc AOB) 

Vậy tam giác OBD =tam giác OAD(c-g-c)

Suy ra góc ODB= góc ODA(2 góc tương ứng)

Mà góc ODA+góc ODB=180o

Suy ra góc ODA=góc ODB=\(\frac{180^o}{2}=90^o\)

Vậy OD vuông góc với AB

25 tháng 12 2021

c: Ta có: HA=HB

nên H nằm trên đường trung trực của AB

mà OD là đường trung trực của AB

nên O,H,D thẳng hàng

25 tháng 11 2017

O A B D

xét \(\Delta OAB\)là \(\Delta\)cân vì \(OA=OB\)( giả thiết)

và \(OD\)là tia phân giác \(\widehat{AOB}\)cắt \(AB\)TẠI \(D\)

\(\Rightarrow OD\)ĐỒNG THỜI LÀ ĐƯỜNG TRUNG TRỰC CỦA \(\Delta OAB\)

\(\Rightarrow AD=DB\) và \(OD\perp AB\)tại \(D\)( điều phải chứng minh)

vậy \(AD=DB\) và \(OD\perp AB\)

12 tháng 8 2019

Giải sách bài tập Toán 7 | Giải sbt Toán 7

ΔAOD= ΔBOD (chứng minh trên)

⇒ ∠(ADO) = ∠(BDO) (hai góc tương ứng) (1)

Ta có: ∠(ADO) + ∠(BDO) =180o(hai góc kề bù) (2)

Từ (1) và (2) suy ra: ∠(ADO) = ∠(BDO) =90o

Vậy: OD ⊥AB

19 tháng 3 2020

a, xét tam giác ODA và tam giác ODB có : OD chung

^DOB = ^DOA do OD là pg của ^BOA (gt)

OA = OB (gt)

=> tam giác ODA = tam giác ODB (c-g-c)

b, t đoán đề là cm OD _|_ AB

tam giác ODA = tam giác ODB (câu a)

=> ^ODA = ^ODB (đn)

mà ^ODA + ^ODB = 180 (kb)

=> ^ODA = 90

=> OD _|_ AB

c, xét tam giác BOE và tam giác AOE có : OE chung

^BOD = ^AOD (câu a)

OB = AO (gt)

=> tam giác BOE = tam giác AOE (c-g-c)

=> EB = EA (đn) => E thuộc đường trung trực của AB 

OB = OA (Gt) => O thuộc đường trung trực của AB

=> OE là trung trực của AB

22 tháng 11 2016

Ta có hình vẽ

O A B D a/ Xét tam giác OAD và tam giác OBD có:

góc AOD = góc BOD (GT)

AD: cạnh chung

OA = OB (GT)

Vậy tam giác OAD = tam giác OBD (c.g.c)

=> DA = DB (2 cạnh tương ứng) (đpcm)

b/ Ta có: tam giác OAD = tam giác OBD (câu a)

=> góc ODA = góc ODB (2 góc tương ứng)

Mà góc ODA + góc ODB = 1800 (kề bù)

=> góc ODA = góc ODB = 1800 / 2 = 900

Vậy OD \(\perp\) AB (đpcm)

30 tháng 11 2016

Ta có hình vẽ:

O A B D Xét tam giác OAD và tam giác OBD có:

OA = OB (GT)

\(\widehat{AOD}\)=\(\widehat{BOD}\) (GT)

OD: cạnh chung

=> tam giác OAD = tam giác OBD (c.g.c)

=> \(\widehat{ODA}\)=\(\widehat{ODB}\) (2 góc tương ứng)

\(\widehat{ODA}\)+\(\widehat{ODB}\) = 1800 (kề bù)

=> \(\widehat{ODA}\)=\(\widehat{ODB}\) = 900

Vậy OD \(\perp\)AB (đpcm)

30 tháng 11 2016

Ta có hình vẽ sau:

 

 

 


1 2 A O B D

Xét ΔOAD và ΔOBD có:

OD là cạnh chung

\(\widehat{O_1}=\widehat{O_2}\) (gt)

OA = OB (gt)

=> ΔOAD = ΔOBD (c-g-c)

=> \(\widehat{ADO}=\widehat{BDO}\) (2 góc tương ứng)

\(\widehat{ADO}+\widehat{BDO}=180^o\) (2 góc kề bù)

=> \(\widehat{ADO}=\widehat{BDO}\) = \(\frac{180^o}{2}\) = 90o

=> OD \(\perp\) AB (đpcm)