Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\widehat{B}=120^o,\widehat{A}=90^o\Rightarrow\widehat{C}+\widehat{D}=360^o-\widehat{A}-\widehat{B}=150^o\)
CO, DO là hai tia phân giác góc C và góc D
=> \(\widehat{C_1}+\widehat{D_1}=\frac{1}{2}\widehat{C}+\frac{1}{2}\widehat{D}=\frac{1}{2}\left(\widehat{C}+\widehat{D}\right)=\frac{1}{2}.150^o=75^o\)
=> \(\widehat{COD}=180^o-\left(\widehat{C_1}+\widehat{D_1}\right)=180^o-75^o=105^o\)
b)
Xét tam giác COD
Ta có: \(\widehat{COD}=180^o-\left(\widehat{C_1}+\widehat{D_1}\right)=180^o-\frac{1}{2}\left(\widehat{C}+\widehat{D}\right)\)
Vì: \(\widehat{C_1}+\widehat{D_1}=\frac{1}{2}\widehat{C}+\frac{1}{2}\widehat{D}=\frac{1}{2}\left(\widehat{C}+\widehat{D}\right)\)
Mặt khác: Xét tứ giác ABCD ta có: \(\widehat{C}+\widehat{D}=360^o-\widehat{A}-\widehat{B}\)
=> \(\widehat{COD}=180^o-\frac{1}{2}\left(360^o-\widehat{A}-\widehat{B}\right)=\frac{1}{2}\widehat{A}+\frac{1}{2}\widehat{B}\)
c) Tương tự ta cũng chứng minh dc:
\(\widehat{BIA}=\frac{1}{2}\widehat{C}+\frac{1}{2}\widehat{D}\)
=> \(\widehat{COD}+\widehat{BIA}=\frac{1}{2}\widehat{A}+\frac{1}{2}\widehat{B}+\frac{1}{2}\widehat{C}+\frac{1}{2}\widehat{D}=\frac{1}{2}\left(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}\right)=\frac{1}{2}.360^o=180^o\)
=>\(\widehat{FOE}+\widehat{EIF}=180^o\)
=> \(\widehat{OEI}+\widehat{IFO}=180^o\)
Vậy tứ giác EIF có các góc đối bù nhau!
Ta có BAD + ABC + BCD + CDA = 360 độ
ADC + BCD = 360 - 120 - 90 = 150 độ
=> BCO = OCD = 1/2 BCD
=> ADO = ODC = 1/2 ADC
=> ODC + OCD = 1/2 ODC + 1/2 OCD = ODC+OCD/2
=> ODC + OCD = 150 /2 =75 độ
Mà ODC + OCD +DOC = 180 độ
=> DOC = 180 - 75 = 105 độ
B) COD = 180 - (ODC + OCD)
=> COD = 180 - 1/2ADC + 1/2 BCD
Mà ADC + BCD = 360 - ( BAD + ABC)
COD = 180 - [ 360 - 1/2(BAD + ABC )]
a) Vì △ABC cân tại A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\frac{1}{2}\widehat{ABC}=\frac{1}{2}\widehat{ACB}\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)
Xét △ABD và △ACE có :
AB = AC (gt)
\(\widehat{A}\)chung (gt)
\(\widehat{ABD}=\widehat{ACE}\) (cmt)
\(\Rightarrow\)△ABD = △ACE (g.c.g)
\(\Rightarrow\)AD = AE (Cặp cạnh tương ứng)
Mà AB = AC
\(\Rightarrow\frac{AE}{AB}=\frac{AD}{AC}\)
\(\Rightarrow\)DE // BC (Định lí Ta-lét)
b) Ta có : ED // BC
\(\Rightarrow\widehat{EDB}=\widehat{DBC}\)(so le trong)
\(\Rightarrow\widehat{EDB}=\widehat{EBD}\)
\(\Rightarrow\)△EBD cân tại E
\(\Rightarrow\)EB = ED
\(\Rightarrow\)EB = 10
Xét △ABC có : DE // BC
\(\Rightarrow\frac{AE}{AB}=\frac{DE}{BC}\)(Định lí Ta-lét đảo)
\(\Rightarrow\frac{AB-EB}{AB}=\frac{DE}{BC}\)
\(\Rightarrow\frac{AB-EB}{AB}=\frac{10}{16}\)
\(\Rightarrow\frac{AB-10}{AB}=\frac{5}{8}\)
\(\Rightarrow5AB=8AB-80\)
\(\Rightarrow AB=\frac{80}{3}\)
Vậy \(AB=\frac{80}{3}\)(đvdt)