Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Bạn tự vẽ hình giùm)
a/ \(\Delta ADM\)và \(\Delta CBM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMD}=\widehat{BMC}\)(đối đỉnh)
DM = BM (gt)
=> \(\Delta ADM\)= \(\Delta CBM\)(c. g. c) => AD = BC (hai cạnh tương ứng)
b/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
BM = DM (gt)
=> \(\Delta ABM\)= \(\Delta CDM\)(c. g. c)
=> \(\widehat{BAM}=\widehat{MCD}=90^o\)(hai góc tương ứng)
=> AC _|_ CD (đpcm)
a/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
BM = DM (gt)
=> \(\Delta ABM\)= \(\Delta CDM\)(c. g. c)
b) Ta có \(\Delta ABM\)= \(\Delta CDM\)(cm câu a) => \(\widehat{BAC}=\widehat{ACD}\)(hai góc tương ứng bằng nhau ở vị trí so le trong)
=> AB // CD (đpcm)
a) Xét ΔΔBMC và ΔΔDMA có:
BM = DM (gt)
BMCˆBMC^ = DMAˆDMA^ (đối đỉnh)
MC = MA (suy từ gt)
=> ΔΔBMC = ΔΔDMA (c.g.c)
=> BC = DA (2 cạnh tương ứng)
b) Vì ΔΔBMC = ΔΔDMA (câu a)
nên BCAˆBCA^ = CADˆCAD^ (2 góc t ư) và BC = DA (2 cạnh t ư)
Xét ΔΔDCA và ΔΔBAC có:
CA chung
CADˆCAD^ = ACBˆACB^ ( cm trên)
DA = BC (cm trên)
=> ΔΔDCA = ΔΔBAC (c.g.c)
=> DCAˆDCA^ = BACˆBAC^ = 90 độ (góc t ư)
Do đó CD ⊥⊥ AC
c) .................
Giải
a) Xét ΔBMC và ΔDMA có:
BM = DM (gt)
BMC\(\widehat{BMC}\) = \(\widehat{DMA}\)(đối đỉnh)
MC = MA (suy từ gt)
=> ΔBMC = ΔDMA (c.g.c)
=> BC = DA (2 cạnh tương ứng)
b) Vì ΔBMC = ΔDMA (câu a)
nên \(\widehat{BCA}=\widehat{CAD}\)= \(\widehat{CAD}\)(2 góc t ư) và BC = DA (2 cạnh t ư)
Xét ΔDCA và ΔBAC có:
CA chung
\(\widehat{CAD}\)= \(\widehat{ACB}\)(cm trên)
DA = BC (cm trên)
=> ΔDCA = ΔBAC (c.g.c)
=> \(\widehat{DCA}\) = \(\widehat{BAC}\)= 90 \(^0\) (góc t ư)
Do đó CD ⊥ AC
c,Vì BN // AC (gt) => \(\widehat{BND}\)=\(\widehat{ACD}\)=90\(^0\)\(\widehat{BND}\)=\(\widehat{ACD}\)=90\(^0\)
Xét tam giác BND vuông tại N có:
NM là đường trung tuyến ứng vs cạnh huyền BD => NM=\(\frac{1}{2}\)BC=BM
Xét 2 tam giác vuông: ΔABM(\(\widehat{A}\)=90\(^0\))ΔABM(\(\widehat{A}\)=90\(^0\))và ΔCNM(\(\widehat{C}\)=90\(^0\))ΔCNM(\(\widehat{C}\)=90\(^0\)) có:
AM = CM (gt)
NM = BM (cmt)
=> ΔABM=ΔCNM(ch−1cgv) (đpcm)
# mui #
A) XÉT \(\Delta BAI\)VÀ \(\Delta BDI\)CÓ
BI LÀ CẠNH CHUNG
\(\widehat{BIA}=\widehat{BID}=90^o\)
\(AI=DI\left(gt\right)\)
=>\(\Delta BAI\)=\(\Delta BDI\)(C-G-C)
=> \(\widehat{ABI}=\widehat{DBI}\)HAY \(\widehat{ABC}=\widehat{DBC}\)
=> BC LÀ PHÂN GIÁC CỦA GÓC\(\widehat{ABD}\)
B) VÌ AI = DI (GT)
=> CI LÀ ĐƯỜNG TRUNG TUYẾN THỨ NHẤT CỦA \(\Delta ACD\)
TA CÓ \(BM=CM\left(GT\right)\)
THAY \(BI+MI=CM\)
MÀ BI = MI (GT)
\(\Rightarrow2MI=CM\)
MÀ CI LÀ ĐƯỜNG TRUNG TUYẾN THỨ NHẤT CỦA \(\Delta ACD\)
=> M LÀ TRỌNG TÂM CỦA \(\Delta ACD\)
TA CÓ DK = CK (GT)
=> AK LÀ ĐƯỜNG TRUNG TUYẾN THỨ HAI CỦA \(\Delta ACD\)
=> AK BẮT BUỘT ĐI QUA TRỌNG TÂM M
=> A,K,M THẲNG HÀNG
C) THEO GT TA CÓ
\(BC=2AB\)
\(\Leftrightarrow BC=AB+AB\)
\(\Leftrightarrow BC=AB+AM\)( AB = AM )
\(\Leftrightarrow BM+CM=AB+AM\)
\(\Leftrightarrow2CM=2AM\)( BM=CM ; AB=AM)
\(\Leftrightarrow CM=AM\)
=> \(\Delta ACM\)CÂN TẠI M