Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
Bài làm
a) Xét tam giác ABH vuông tại H có:
Theo định lí Pytago có:
AB2 = AH2 + HB2
hay AB2 = 62 + 42
=> AB2 = 36 + 16
=> AB2 = 52
=> AB = \(2\sqrt{13}\) \(\approx\)7,2 ( cm )
b) Xét tam giác AHC vuông ở H có:
Theo định lí Pytago có:
AC2 = AH2 + HC2
Hay AC2 = 62 + 92
=> AC2 = 36 + 81
=> AC2 = 117
=> AC = \(3\sqrt{13}\)\(\approx\)10,8 ( cm )
Ta có: BC = 9 + 4 = 13
=> BC2 = 132 = 169
AB2 + AC2 = \(\left(2\sqrt{13}\right)^2+\left(3\sqrt{13}\right)^2=52+117=169\)
=> BC2 = AB2 + AC2
=> Tam giác ABC vuông tại A ( Theo định lí Pytago đảo )
c) Vì DE song song với AH
Theo định lí Thalets có:
\(\frac{CH}{HD}=\frac{AC}{AE}\)
hay \(\frac{9}{6}=\frac{3\sqrt{13}}{AE}\)
=> AE = \(\frac{6.3\sqrt{13}}{9}=\frac{18\sqrt{13}}{9}=2\sqrt{13}\)
Mà AB = \(2\sqrt{13}\)
=> AE = AB ( = \(2\sqrt{13}\)) ( đpcm )
a: Ta có: \(\widehat{ABC}+\widehat{ABM}=180^0\)(hai góc kề bù)
\(\widehat{ACB}+\widehat{ACN}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ABM}=\widehat{ACN}\)
Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
=>AM=AN
=>ΔAMN cân tại A
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)(ΔABM=ΔACN)
Do đó: ΔAHB=ΔAKC
=>HB=KC và AH=AK
c: Sửa đề: HB cắt KC tại O
Xét ΔHBM vuông tại H và ΔKCN vuông tại K có
BM=CN
HB=KC
Do đó: ΔHBM=ΔKCN
=>\(\widehat{HBM}=\widehat{KCN}\)
Ta có: \(\widehat{HBM}=\widehat{KCN}\)
\(\widehat{OBC}=\widehat{HBM}\)(hai góc đối đỉnh)
\(\widehat{OCB}=\widehat{KCN}\)(hai góc đối đỉnh)
Do đó: \(\widehat{OBC}=\widehat{OCB}\)
=>ΔOBC cân tại O
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(1)
Ta có: AB=AC
=>A nằm trên đường trung trực của BC(2)
Từ (1),(2) suy ra AO là đường trung trực của BC
=>AO\(\perp\)BC
Xét ΔABO và ΔACO có
AO chung
AB=AC
BO=CO
Do đó: ΔABO=ΔACO
=>\(\widehat{BAO}=\widehat{CAO}\)
=>AO là phân giác của góc BAC
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)