Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D C E A G B
a, Xét tam giác ABC vuông tại A có: BC2 = AB2 + AC2 = 122 + 92 = 225
\(\Rightarrow BC=\sqrt{225}=15\left(cm\right)\)
Vì 15cm > 12cm > 9cm nên BC > AB > AC
=> Góc BAC > góc ACB > góc ABC (định lí)
b, Xét tam giác ADE có: EC là đường cao đồng thời là đường trung tuyến
=> Tam giác ADE cân tại E (đpcm)
c, Ta có: Góc ABD + góc D = 90o (vì tam giác ABD vuông tại A)
Góc DAE + góc BAE = 90o
Góc DAE = góc D (vì tam giác ADE cân tại E)
=> Góc ABD = góc BAE
=> Tam giác ABE cân tại E
=> AE = BE
Lại có: AE = DE (cmt) => BE = DE
=> E là trung điểm của BD (đpcm)
d, Xét tam giác ABD có: 2 đường trung tuyến BC và AE cắt nhau tại G
=> G là trọng tâm của tam giác ABD
\(\Rightarrow BG=\frac{2}{3}BC\) (định lí)
\(=\frac{2}{3}.15=10\left(cm\right)\)
a/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
BM = DM (gt)
=> \(\Delta ABM\)= \(\Delta CDM\)(c. g. c)
b) Ta có \(\Delta ABM\)= \(\Delta CDM\)(cm câu a) => \(\widehat{BAC}=\widehat{ACD}\)(hai góc tương ứng bằng nhau ở vị trí so le trong)
=> AB // CD (đpcm)
a: Xét ΔDBC có
M là trung điểm của BC
E là trung điểm của BD
Do đó: ME là đường trung bình
=>ME//CD
b: Xét ΔAEM có
D là trung điểm của AE
DI//EM
Do đó: I là trung điểm của AM
Xét ΔAEM có
D là trung điểm của AE
I là trung điểm của AM
Do đó: DI là đường trung bình
=>DI=ME/2
mà ME=CD/2
nên DI=CD/4
=>CD=4DI
=>CI=3DI
a) Xét ΔBCDΔBCD có:
MB=MC(gt)
EB=ED(Vì E nằm giữa B,D)
=> ME là đường trung bình của tam giác BCD
Do đó ME//CD.
b) Xét ΔAEMΔAEM có:
AD=DE
DI//ME
=>AI=IM
c) Theo a)thì ME là đường trung bình của tam giác BCD
nên CD=2ME(1)
Theo b) Thì DI là đường trung bình của tam giác AME
nên ME=2DI(2)
Từ (1) và (2) ta cso:
CD=4DI(3)
Từ đẳng thức(3) ta cso thể viết:CI+DI=4DI=>CI=3DI
a. Xét tam giác BCD có AC và DM là 2 trung tuyến của tam giác BCD mà chúng cắt nhau ở G nên G là trọng tâm của tam giác ABC
=> \(GC=\frac{2}{3}CA=>GA=\frac{1}{3}AC=>\frac{GA}{GC}=\frac{\frac{1}{3}AC}{\frac{2}{3}AC}=\frac{1}{2}\)
=> GC=2GA
b. Theo câu a, G là trọng tâm của tam giác BCD
=> BG là trung tuyến của tam giác BCD
hay BI là trung tuyến của tam giác BCD
a) Do CA = CD (gt)
⇒ C là trung điểm của AD
⇒ BD là đường trung tuyến của ∆ABD
Mà BT = 2TC (gt)
⇒ T là trọng tâm của ∆ABD
b) Do T là trọng tâm của ∆ABD (cmt)
⇒ T là giao điểm của ba đường trung tuyến của ∆ABD
⇒ DT là đường trung tuyến của ∆ABD
Mà E là giao điểm của DT và AB (gt)
⇒ E là trung điểm của AB